“A number of factors contribute to your individual susceptibility to DCS and can even alter your susceptibility from day to day.”
The most significant risk factor is your exposure profile — that is, the time, depth and ascent rate of your dives. Some degree of exposure intensity is required to initiate a decompression insult, regardless of the presence of other predisposing factors.
Namun, ada sejumlah faktor yang dapat berperan dalam hasil Anda jika Anda mengalami paparan yang cukup untuk membuat DCS menjadi kemungkinan. Beberapa faktor risiko umum diuraikan dalam bab ini.
Dalam bab ini, Anda akan mempelajari tentang:
- Beban kerja
- Stres Termal
- Praktik Optimal
- Perjalanan Udara Setelah Menyelam
- Kebugaran Medis dan Fisik
- Keadaan Hidrasi
- Campuran Gas Pernapasan
- Tingkat Karbon Dioksida
- Patent Foramen Ovale
- Faktor-Faktor Tambahan
Beban kerja
Selama Penyelaman

Waktu dan intensitas olahraga selama penyelaman dapat secara substansial mempengaruhi risiko DCS Anda. Beban kerja yang tinggi selama fase penyelam turun ke kedalaman dan di dasar akan meningkatkan penyerapan gas inert Anda, yang secara efektif meningkatkan tekanan dekompresi berikutnya. Dan pengerahan tenaga di dekat akhir atau segera setelah menyelam, terutama jika melibatkan kekuatan gabungan yang tinggi, dapat merangsang pembentukan gelembung dan meningkatkan kemungkinan gelembung melewati paru-paru tanpa disaring keluar dari sirkulasi.
You should keep your exercise intensity as low as possible during the bottom phase of a dive. Mild exercise — on the order of no more than two to three times resting effort, and with very low joint forces — is appropriate during the upper ascent and stop phases of a dive. However, any exercise, particularly exercise involving high joint forces, should be avoided as long as possible after a dive. If you are unable to avoid postdive exercise, you should keep your dive profiles very conservative to minimize your overall risk.
Stres Termal
A diver’s thermal status has long been known to influence decompression risk. The impact is best appreciated by considering the two fundamental phases of every dive: the descent and bottom phase, when gas uptake occurs, and the ascent and stop phase, when gas elimination occurs.
Dua Tahapan
Selama fase penurunan dan dasar dalam suatu penyelaman, keadaan yang relatif hangat menghasilkan peningkatan penyerapan gas inert; ini setara dengan melakukan penyelaman yang lebih dalam dan/atau lebih lama. Di sisi lain, jika Anda dapat mempertahankan keadaan dingin atau termonetral selama fase turun dan fase dasar, Anda akan secara efektif mengurangi penyerapan gas inert. Efek menguntungkan ini akan lebih diperbesar jika Anda mengerahkan diri sesedikit mungkin selama fase ini.

Selama fase naik dan penghentian dalam penyelaman Anda, keadaan yang relatif hangat akan mendorong eliminasi gas inert, sehingga mengurangi stres dekompresi secara keseluruhan. Di sisi lain, keadaan dingin atau dingin selama fase ini akan mengurangi eliminasi gas inert, secara efektif memperpanjang dan mungkin meningkatkan tekanan dekompresi.
The decompression hazard associated with hot water suits — which effectively establish a warm condition in both phases of a dive — was established in a study of North Sea divers conducted 30 years ago (Shields and Lee 1986). The impact of thermal status on decompression stress was even more elegantly demonstrated in a recent study conducted by the U.S. Navy (Gerth et al. 2007). The controlled conditions of a research study cannot be directly correlated with everyday diving practices, but the key message from these studies is the importance of thoughtful thermal status. Keeping neutral on your way down — certainly avoiding unnecessary overheating — and warm on your way up (approaching a cool-warm pattern) will reduce the risk of DCS in comparison to being warmer on your way down and cool on your way up (a warm-cool pattern).
Praktik Optimal
The difficulty comes in reconciling optimal practices for decompression safety with divers’ desires and normal practices. It is understandable for divers to want to warm themselves before the start of a dive, in anticipation of getting colder as the dive proceeds. Historically, divers did this by pouring warm water into their wetsuits or gloves before a dive. Then some divers began to place chemical hot packs in their suits. Modern divers have even more choices available to them, due to today’s array of active heating garments suitable for use with either wetsuits or drysuits. The problem, though, remains the same: warming the body’s peripheral tissues enhances circulation and increases the delivery of inert gases, particularly if the heating is applied early in a dive, when inert gas uptake is typically at its highest level. Furthermore, both warm water and chemical hot packs lose their effectiveness over time, potentially creating the warm-cool pattern shown to generate the greatest risk of DCS. Even active heating garments — which are able to keep the diver warm throughout a dive — involve a somewhat elevated risk. As shown with hot water suits, a warm-warm pattern, while associated with less DCS than a warm-cool pattern, remains more hazardous than a cool-warm pattern. Practically, divers should maintain adequate thermal protection to ensure clear thinking and physical capability. Excessive warming during dives should be avoided.
Divers must also keep in mind that postdive warming can also influence decompression risk. Indulging in rapid postdive warming, such as by taking a hot shower or getting into a hot tub, decreases the solubility of inert gas in tissues. This will promote the formation of bubbles in local tissues, often before perfusion increases sufficiently to remove the gas. Skin symptoms, fortunately often mild and transient — not cutis marmorata — can develop with rapid warming of the skin postdive. The challenge is to get divers to prioritize safe decompression over pure comfort. If an active heating system is to be used, this means leaving it off or on its lowest setting during your descent and bottom phase, and then turning it up a modest amount during your ascent and stop phase. It also means delaying the postdive pleasure of jumping into a hot shower or hot tub. If delayed gratification is not your style, then you should use more conservative dive profiles to reduce your overall risk.
Perjalanan Udara Setelah Menyelam

Perjalanan udara modern telah membuat lokasi penyelaman yang jauh mudah diakses. Terbang ke suatu tujuan di dekat permukaan laut sebelum menyelam hampir tidak menimbulkan risiko (di luar kemungkinan dehidrasi ringan atau gangguan karena periode imobilitas relatif yang lama). Karena penerbangan berakhir dengan kompresi, jaringan tubuh para penumpang pesawat akan menjadi kurang jenuh saat mendarat dan selanjutnya mengakumulasi gas inert untuk membangun kembali keseimbangan dengan tekanan sekitar.
Terbang setelah menyelam, bagaimanapun, meningkatkan tekanan dekompresi, karena tekanan di kabin pesawat lebih rendah daripada tekanan atmosfer di permukaan tanah. Pesawat komersial harus memiliki kemampuan untuk menjaga tekanan kabin setara dengan 8.000 kaki (2.438 meter), sekitar 0,76 ATA. Ini tidak berarti bahwa tekanan kabin selalu dipertahankan pada tekanan yang lebih tinggi. Sebuah studi baru-baru ini menemukan bahwa 10 persen dari penerbangan komersial yang diuji memiliki tekanan kabin melebihi 8.000 kaki (Hampson et al. 2013). Sekarang bayangkan Anda baru saja menyelesaikan penyelaman hingga 66 kaki (20 meter), di mana Anda mengalami tekanan bawah air sebesar 3,0 ATA. Kembalinya Anda ke permukaan, dan tekanan permukaan laut 1,0 ATA, telah membuat tubuh Anda mengalami pengurangan tekanan tiga kali lipat (3.0:1.0). Jika Anda kemudian naik pesawat yang memiliki ketinggian kabin 8.000 kaki, Anda akan mengalami pengurangan empat kali lipat (3.0:0.76) dan dengan demikian mengalami stres dekompresi yang lebih besar. Selain itu, jika pesawat Anda mengalami depresurisasi kabin yang tidak mungkin tetapi bukan tidak mungkin, Anda akan mengalami stres dekompresi yang jauh lebih besar.
DAN dan Undersea and Hyperbaric Medical Society (UHMS) mengadakan lokakarya pada tahun 2002 untuk meninjau data yang tersedia mengenai tekanan dekompresi terbang setelah menyelam dan mengembangkan pedoman konsensus (Sheffield dan Vann 2004). Ada dua ketentuan penting mengenai pedoman ini: pertama, mematuhinya akan mengurangi risiko Anda tetapi tidak memberikan jaminan bahwa Anda akan menghindari DCS, dan kedua, mengamati interval permukaan yang lebih lama dari minimum yang disarankan akan mengurangi risiko DCS Anda lebih jauh lagi. Dengan mengingat peringatan ini, ini adalah panduannya:
- Setelah satu kali penyelaman tanpa dekompresi, disarankan interval permukaan pra-penerbangan minimum 12 jam.
- Setelah beberapa kali menyelam per hari atau beberapa hari menyelam, disarankan interval permukaan pra-penerbangan minimum 18 jam.
- Setelah penyelaman yang membutuhkan penghentian dekompresi, hanya ada sedikit bukti yang menjadi dasar rekomendasi, tetapi interval permukaan sebelum penerbangan yang jauh lebih lama dari 18 jam dianggap bijaksana.
Ada dua faktor catatan lebih lanjut mengenai pedoman DAN-UHMS tentang terbang setelah menyelam:
- They apply to flights at altitudes of between 2,000 and 8,000 feet (610 and 2,438 meters). The effect of a flight at an altitude below 2,000 feet was considered mild enough not to warrant special consideration — giving divers the flexibility to engage in modest postdive air travel, such as a short, low-altitude, inter-island flight.
- Mereka hanya berlaku untuk penyelam yang tidak mengalami gejala DCS. Sangat penting bahwa seorang penyelam yang mengalami gejala apapun yang konsisten dengan DCS untuk mencari pengobatan sebelum terbang.
It is important to remember that any postdive ascent to a higher altitude — even using ground transportation — increases your decompression stress. Taking a cautious approach in such a case, by keeping your final dive profiles more conservative and/or delaying your travel to the higher altitude, is always advisable. The U.S. Navy has generated detailed tables and procedures that allow computation of exposure limits to a greater range of altitudes and with more time flexibility than the DAN-UHMS guidelines (USN 2008). It is important to appreciate, though, that these are simply mathematical constructs based on the same data used in developing the DAN-UHMS guidelines. Furthermore, they require the computation of repetitive groups for planning, something that is done with dive tables but not dive computers. Despite these limitations, they can be useful, particularly for a regular pattern of altitude diving.
Kebugaran Medis dan Fisik

Kebugaran medis dan fisik yang buruk dapat membahayakan keselamatan Anda secara umum dan dapat meningkatkan risiko DCS Anda. Data definitif terbatas, tetapi tidak diragukan lagi bahwa adalah bijaksana untuk mempertahankan tingkat kebugaran fisik yang tinggi dan menyelam secara progresif lebih konservatif saat tingkat kebugaran Anda menurun. Penyelaman yang aman dimungkinkan selama sebagian besar rentang kehidupan normal, tetapi penting bagi semua penyelam untuk mencari evaluasi yang teratur dan objektif atas kemampuan mereka dan untuk menyesuaikan praktik menyelam mereka dengan tepat. Tetapi bahkan bagi penyelam yang telah beralih dari bentuk penyelaman mandiri ke bentuk yang lebih bergantung, di mana mereka semakin bergantung pada dukungan orang lain, pada akhirnya akan ada titik di mana mereka harus menggantung siripnya.
Rekomendasi Aktivitas Fisik
Adults need two types of regular activity to maintain or improve their health—aerobics and strength training. The Centers for Disease Control and Prevention’s 2008 Physical Activity Guidelines for Americans recommends at least two and a half hours a week of moderate-intensity aerobic exercise to achieve health benefits, and five hours a week to achieve additional fitness benefits. And just as important as engaging in aerobic exercise is doing muscle-strengthening activities at least two days a week.
Sementara kesehatan dan kebugaran fisik yang baik tidak akan menyelesaikan semua masalah, fondasi adalah salah satu yang penting. Cadangan fisik yang memadai dapat memungkinkan respons cepat untuk mencegah masalah kecil menjadi serius. Skenario yang relevan dapat dengan mudah dibayangkan untuk hampir semua penyelaman.
Latihan aerobik secara teratur memiliki banyak manfaat positif. Cadangan jantung adalah perbedaan antara tingkat di mana jantung memompa darah saat istirahat dan kapasitas maksimumnya. Peningkatan cadangan ini dapat memudahkan untuk memenuhi tuntutan fisik aktivitas menyelam dan stres. Nilai kolesterol darah dapat meningkat, mengurangi kerentanan terhadap penyakit jantung. Sensitivitas insulin dapat meningkat, mengurangi risiko terkena diabetes. Sementara data khusus untuk menyelam jauh lebih awal, ada juga beberapa bukti bahwa tingkat kebugaran aerobik yang lebih tinggi dapat berkontribusi pada pengurangan stres dekompresi.
Kebanyakan individu sadar bahwa menjadi bugar dapat meningkatkan kualitas hidup. Masalah utama, bagaimanapun, adalah bahwa waktu mengambil korban pada kita. Kemudahan yang kita gunakan untuk mempertahankan tingkat kebugaran kita di usia 20-an bisa sangat berbeda dari kenyataan seiring berlalunya waktu. Kebugaran aerobik biasanya menurun rata-rata satu persen per tahun setelah usia 30 tahun. Poin pentingnya adalah bahwa sementara beberapa penurunan mungkin tidak dapat dihindari karena hilangnya massa otot secara bertahap dan pengurangan aktivitas metabolisme otot yang menua, tingkatnya dapat melambat dan jangkauan cadangan diperluas dengan menerapkan gaya hidup sehat sedini mungkin.
Kebugaran fisik yang dibutuhkan untuk menyelam akan bervariasi dengan tuntutan lingkungan, peralatan, dan sifat penyelaman. Strategi terbaik adalah memasukkan aktivitas fisik secara teratur ke dalam hidup Anda untuk meningkatkan atau mempertahankan kemampuan Anda, dan untuk memperpanjang kehidupan menyelam Anda. Jangan mengandalkan menyelam untuk membuat Anda tetap fit secara fisik. Jika dilakukan dengan benar, itu akan menjadi waktu santai Anda di dalam air. Untuk mempertahankan atau membangun kapasitas dan kekuatan aerobik, berenang, bersepeda, berlari, atau melakukan aktivitas fisik lainnya yang dapat Anda nikmati. Semakin fit Anda, semakin lama Anda bisa bermain.
Rekomendasi aktivitas fisik terperinci dapat ditemukan di cdc.gov/physicalactivity/everyone/guidelines.
Keadaan Hidrasi

Dehydration gets a substantial amount of attention in the lay diving community as a risk factor for DCS, but probably more than is warranted. Sound hydration is important for good health, both for general and for diving health, but for your dive profile, thermal stress and exertion level are far more important risk factors for DCS. The undue focus on dehydration is probably a result of two issues. The first is that substantial fluid shifts can result from DCS, often creating a need for substantial fluid therapy and creating an impression that this was a cause, rather than a consequence, of the disease. The second issue is human nature — the understandable desire to assign blame for a condition that is capricious. DCS is fickle. A diver may adhere to a similar dive profile many times without incident but then develop DCS while following the very same profile. It is comforting to try and identify a single causal agent, even if this is more wishful than factual. It is important for divers to realize that a multitude of factors can subtly affect the risk on any one dive and that there is a probabilistic nature to the disease. Focusing on a range of strategies to reduce risk is more effective than trying to put all the blame on one.
Campuran Gas Pernapasan
Campuran gas pernapasan tertentu yang Anda gunakan, dan bagaimana Anda menggunakannya, dapat berperan dalam perkembangan DCS. Campuran yang dikenal sebagai nitrox udara yang diperkaya, atau hanya nitrox, semakin populer untuk penyelaman rekreasi. Persentase oksigen dalam campuran meningkat, mengurangi fraksi nitrogen. Ini berarti bahwa ada lebih sedikit serapan nitrogen pada kedalaman tertentu. Efek dekompresi nitrox, dibandingkan dengan udara, dapat dihitung dengan menghitung apa yang dikenal sebagai kedalaman udara ekuivalen (EAD). Risiko DCS saat menyelam dengan nitrox ke batas tabel EAD tidak jauh berbeda dari menyelam dengan udara ke batas tabel udara. Dimungkinkan untuk mencapai penyangga keamanan dekompresi dengan menggunakan nitrox dengan batas tabel udara, karena ini akan mengurangi penyerapan gas inert Anda dibandingkan dengan menggunakan udara.

The critical caveat with nitrox is that its higher oxygen content means that a diver breathing nitrox is at risk of developing oxygen toxicity at a shallower depth than a diver breathing air. The recommended maximum partial pressure of oxygen — partial pressure being the portion of the total gas pressure represented by a single gas — is 1.4 ATA for recreational diving. When diving with air (21 percent oxygen), this level is reached at a seawater depth of 187 feet (57 meters) — beyond the usual recreational diving limit (187 feet of seawater = 6.6 ATA * 0.21 ATA oxygen in air = 1.4 ATA). When diving with a 32 percent nitrox mixture, this level is reached at a seawater depth of 111 feet (34 meters), and with 36-percent nitrox at just 95 feet (29 meters) — depths commonly reached by recreational divers.
Tingkat Karbon Dioksida

Elevated levels of carbon dioxide can increase the risk of DCS and lower the threshold for oxygen toxicity. Carbon dioxide is a potent vasodilator, meaning it causes the blood vessels to widen, increasing blood flow and the delivery of gases to tissues. Factors that can raise divers’ carbon dioxide levels include the increased dead space of breathing equipment (gas volume that must be moved but does not take part in gas exchange), the additional work of breathing dense gas underwater, and exercise. Using a well-designed and well-maintained breathing system, minimizing physical effort and remaining relaxed while underwater can minimize carbon dioxide increase.
Patent Foramen Ovale

Patent foramen ovale (PFO), literally, open ovale window, is a persistent opening between the left and right atria of the heart. In fetal circulation, a major opening between the atria allows blood to largely bypass the lungs that are not yet being used for gas exchange. A flap normally closes over the opening after birth and is sealed by tissue. In approximately 25 percent of the population, a partial opening remains, the PFO. The opening can range in size from functionally irrelevant to physiologically significant, the latter allowing a substantial portion of blood to be shunting from the right heart to the left heart, bypassing gas exchange and filtration in the lungs. PFOs typically produce no symptoms and individuals are unaware of their status unless they are incidentally discovered through medical tests. However, the presence of a large PFO may increase the risk of DCS in divers who develop significant bubble loads. The correlation between PFO and DCS risk is not a clear one, since the frequency of PFO in the population is fairly high while DCS is relatively rare. The safest strategy — even if you have not been diagnosed with a PFO, but most certainly if you have — is to dive in a manner calculated to keep your bubble load low; this effectively eliminates any concern that bubbles might pass through a PFO and bypass the lungs, where they would normally be filtered out.
Konsensus yang paling umum dipegang adalah bahwa penyaringan semua penyelam untuk PFO mungkin tidak diperlukan. Dan bahkan pada penyelam yang telah didiagnosis dengan PFO, memutuskan apakah itu memerlukan penutupan dengan pembedahan adalah pilihan yang harus dipertimbangkan oleh setiap individu dengan hati-hati dengan tim medis yang terinformasi dengan baik.
Faktor-Faktor Tambahan

A host of other factors may also contribute to any given individual’s risk of DCS. Some probably play minor roles, and some potentially play important roles that have not yet been fully defined. Nutritional status, for example, plays a major role in one’s general health and often in one’s physical fitness, too. While research on the subject of nutrition and diving is limited, it is possible that it also affects decompression safety. For example, one study assessed the relationship between cholesterol levels and decompression-induced bubbles. Doppler ultrasound was used to classify the 30 subjects as either “bubble-prone” or “bubble-resistant.” Among the study’s findings was that, on average, bubble-prone subjects had higher total blood cholesterol levels than the bubble-resistant subjects (Webb et al. 1988). Additional research into this and many other areas is needed.
Jenis Kelamin
Ada sedikit bukti dalam literatur kedokteran menyelam bahwa jenis kelamin berperan dalam perkembangan DCS. Bahkan jika wanita memang memiliki risiko yang sedikit lebih tinggi, seperti yang disarankan dalam literatur kedokteran penerbangan, ada kemungkinan bahwa membuat pilihan yang lebih aman sehubungan dengan praktik menyelam Anda dapat mengimbangi kerentanan fisiologis yang sedikit meningkat.
Usia
Pertambahan usia kadang-kadang dipandang meningkatkan risiko DCS, tetapi mungkin hanya mencerminkan pola khas kebugaran fisik dan medis yang dikompromikan.
Berikutnya Chapter 6 – Summary and Closing Thoughts >