Bab 3: Keracunan Makanan Laut

“Know what you are eating.”

Seafood poisonings are illnesses caused by the ingestion of a natural toxin present in seafood. This toxicity can be inherent to the species as is the case in fugu and other tetraodontiforms, or toxicity can result from external contamination such as shellfish poisonings or ciguatera. Many gastrointestinal issues commonly attributed to seafood poisonings are often actually result of gastrointestinal infections caused by ingestion of harmful bacteria, parasites or viruses, and for that reason they are not included in this text.

In this chapter, we will discuss ichthyosarcotoxism, a form of food poisoning resulting from ingestion of fish flesh containing natural toxins. Ichthyosarcotoxism originates from the Greek words ichthyo (fish), sarx (flesh) and toxism (intoxication or poisoning). The three main ichthyosarcotoxisms are ciguatera, scombroid fish poisoning and tetrodotoxism. We will also cover shellfish-related intoxications. Since shellfish are bivalve mollusks not fish, these cases cannot be called an ichthyosarcotoxism.

Learn more about:


Ciguatera poisoning occurs when contaminated reef fish are consumed. Specific reef fish bioaccumulate toxins produced by microorganisms in their diet. Though ciguatera intoxication should not be fatal, there is no treatment, so it is prudent to become familiar with potentially toxic species to avoid this poisoning.

Source of Intoxication

Ciguatera is caused by ingesting fish contaminated with certain toxins collectively known as ciguatoxins, which are produced by photosynthetic unicellular dinoflagellates (Gambierdiscus toxicus) that are part of phytoplankton. Dinoflagellates are epiphytes, which means they live on macro algae and dead coral surfaces. Small reef fish feed on these corals and macro algae accidentally ingesting these dinoflagellates. As these smaller fish are eaten by larger predators, the toxin is transmitted up the food chain and accumulates in the tissues of top predators through a process known as bioaccumulation. Human poisoning can potentially occur when any of the fish involved in this chain are consumed, but poisoning is much more likely when eating the larger predators.

Species known to be a source of intoxication include barracudas, snappers, moray eels, parrotfish, groupers, triggerfish and amberjacks, but other species have been known to cause occasional outbreaks. Ciguatera toxins rarely contaminate pelagic fish such as tuna, marlins, dolphinfish or other ray-finned fish. Ciguatoxin can be found around the world in the tropical reef belt between 35 degrees north latitude and 35 degrees south latitude.


Ciguatera is probably the most common type of marine food poisoning. It is endemic in Australia, the Caribbean and the South Pacific islands. Ciguatera cases should be naturally limited to these areas, but due to commercial imports, cases of ciguatera have been reported in areas like St. Louis, Missouri and New York City.

Approximately 50,000 reported cases of ciguatera poisoning occur annually worldwide. Epidemiological data regarding ciguatera poisoning is challenging to collect; because of the wide array of symptoms, ciguatera is often misdiagnosed or undiagnosed. People in endemic areas often disregard medical evaluation, while imported cases probably go undiagnosed or unreported, because physicians outside of endemic regions may be unfamiliar with symptoms of a tropical toxin. Recent studies have suggested that the incidence of this illness is continuing to increase, though this might be due to increased reporting rather than an increased occurrence of the disease.

Tanda dan Gejala

Toxicity depends on exposure and dose (how much is ingested). Symptom onset usually occurs two to six hours after ingestion. Symptoms can last for weeks to years, and in some cases may lead to long-term disability.

Signs and symptoms can be highly variable, but typically include neurological or gastrointestinal manifestations; about 80 percent of patients showing varying degrees of impairment in both systems. The most common manifestations include:

  • Gastrointestinal symptoms such as abdominal pain and gastroenteritis, nausea, vomiting or diarrhea. These initial symptoms typically resolve without intervention within a few hours.
  • Neurological symptoms including paresthesia (tingling and numbness), ataxia (uncoordinated muscle movements) and vertigo. Severe cases may include cold allodynia (temperature reversal), a burning sensation upon contact with cold objects. Neurological symptoms may persist and are occasionally misdiagnosed as multiple sclerosis. In patients with a recent history of diving, muscular weakness and pain, these neurological symptoms can also be confounder for decompression illness.
  • Skin itching that can persist for weeks and worsen as a result of activities that increase skin temperature like exercise and alcohol consumption.


  • Avoid consuming fish species commonly associated with ciguatera include barracuda, grouper, snapper, parrotfish, moray eels, triggerfish and amberjacks.
  • Ciguatoxin is odorless, tasteless and heat-resistant—it will not taste different, and cooking will not prevent intoxication.
  • While the whole fish will contain toxins, the highest concentrations are typically found in the liver, intestines and gonads.


There is no definitive treatment for ciguatera poisoning. Both first aid and hospital care is aimed at symptom control. If vomiting is profuse, it is important to correct possible dehydration. If you suspect ciguatera, you should seek a medical evaluation. There are many folk remedies, but the efficacy of these has not been studied. The best course of action is prevention through education and avoidance of seafood in endemic or suspected areas.

The term ciguatera is actually inaccurate. “Ciguatera” was coined by Don Antonio Parra in Cuba in 1787 to describe an indigestion following ingestion of a type of marine snail called “cigua” (Turbo pica). The term “cigua” was somehow transferred to an intoxication caused by the ingestion of coral reef fish.

Keracunan Ikan Scombroid

Scombroid fish poisoning is a foodborne illness that results from eating spoiled fish containing high amounts of histamine.

Source of Intoxication

There are many different species of fish that can be involved in scombroid poisoning, including mackerel, tuna, bonito, albacore, sardines, anchovies, mahi-mahi, amberjacks, marlin and herrings.

If scombroids are poorly refrigerated after being caught, the fish will begin to decompose, and bacteria from the fish’s gastrointestinal tract will invade its flesh. Many fish contain a significant amount of an amino acid called histidine in their flesh. When decomposition begins, the bacteria from the gastrointestinal tract breaks histidine down into histamine (a small nitrogen compound involved in regulation of immune reactions and inflammatory responses). While ingestion of histidine is harmless, ingestion of large quantities of histamine can mimic an allergic reaction.


In the United States and Europe, scombroid fish poisoning accounts for up to 40 percent of seafood-borne illness outbreaks. Between 1998 and 2002, there were 167 reported outbreaks in the United States affecting 703 persons with no fatalities. Scombroid fish poisoning can happen anywhere in the world where susceptible fish are harvested. This poisoning is more common when consuming fish caught recreationally or from small-scale operations; it rarely occurs in highly regulated fish harvests.

Tanda dan Gejala

Ingestion of large quantities of histamine can mimic an allergic reaction. Symptom onset may range from minutes after consumption to up to two hours and typically resolves within 24 hours.

Symptoms may include:

  • Skin flushing
  • Oral burning
  • Nausea
  • Abdominal cramps
  • Diarrhea
  • Palpitations
  • Sweating

Signs may consist of:

  • Redness (diffuse erythema)
  • Elevated heart rate at rest (tachycardia)
  • Hypo- or hypertension
  • Wheezing (likely in individuals with a history of asthma, chronic obstructive pulmonary disease or reactive airway disease)

Due to its resemblance to an allergic reaction combined with poor knowledge of intoxication, scombroid fish poisoning is commonly misdiagnosed as a seafood allergy. Anyone showing signs and symptoms compatible with allergic reactions should seek an immediate medical evaluation as allergic and allergic-like reactions can be life threatening.


  • Scombroid fish poisoning is entirely preventable by immediately storing fresh fish in coolers or ice containers away from direct sunlight. The Centers for Disease Control and Prevention (CDC) recommends temperatures below 40°F (4.4°C) at all points during the fish supply chain.
  • Affected fish may have a peppery taste, but normal taste does not guarantee safety.
  • Histamine is heat stable, so cooking does not prevent scombroid fish poisoning.


As opposed to genuine allergic reactions, where the source of histamine is internal, treatment for scombroid fish poisoning does not require the use of corticosteroids or adrenaline (epinephrine). Instead, scombroid fish poisoning responds very well to oral antihistamines, typically showing positive results within 10 to 15 minutes.

Never assume oral antihistamines are enough to control a presumed scombroid fish poisoning on your own. Always seek for professional medical evaluation and let a medical doctor decide over treatment and best course of action.

Keracunan Red Tide & Kerang

Red tide is a colloquial term for a specific phenomenon known as harmful algal bloom. Occasionally, large concentrations of aquatic microorganisms naturally bloom in coastal areas. The rapid accumulation of algal blossom can be significant enough to cause a green, red or brown discoloration of estuarine and freshwater environments.

Scientists discourage the term red tide, because these phenomena are unrelated to tidal water movements and may not necessarily be red in color or present any discoloration at all. Instead, when these algal blooms are associated with potentially harmful toxins, a more precise and favored terminology is harmful algal bloom (HAB).

Negative Impact on Ecosystems

Among the involved microorganisms certain species of phytoplankton may be present, which can produce harmful natural toxins that can become concentrated in tissues of filter feeders like shellfish and other mollusks and crustaceans. The whole food chain may be affected, and millions of fish may die as a result.

Danger to Humans

These toxins can affect commercial fisheries and represent a public health threat. People who consume contaminated shellfish may suffer a variety of shellfish poisonings, some of which are potentially lethal. Hazards related to HAB may not be limited to shellfish consumption, so avoid harvesting any type seafood on areas where HAB is known to have endemic outbreaks.

Shellfish Poisonings

Shellfish are bivalve (two-part shells) mollusks that capture nutrients by filtering water. During this process, these filter feeders can accumulate toxins and other contaminants. When humans consume these bivalves, they may be poisoned. These toxins are water-soluble and heat- and acid-stable—they are unaltered by ordinary cooking methods. Shellfish poisonings are a group of four different syndromes caused by eating bivalve mollusks contaminated with toxins produced by microscopic algae.


There are four different types of shellfish poisonings that are primarily associated with mollusks such as mussels, clams, oysters and scallops.


These mollusks can accumulate a toxin called saxitoxin, which is produced by phytoplankton (dinoflagellates, diatoms and cyanobacteria). Some shellfish remain toxic for several weeks, while others can store the toxin for up to two years.

PSP blooms are associated with harmful algal blooms, which can occur in almost all oceans. PSP can be fatal, particularly in children. Symptoms can appear a few minutes after ingestion and include nausea, vomiting, diarrhea, abdominal cramps, numbness or burning around the mouth, gums, tongue and progressing to the neck, arms, legs and toes. Other symptoms may include dry mouth, shortness of breath, slurred speech and loss of consciousness. Signs of toxicity and mortality are also seen in wild animals.


This rare syndrome is caused by consuming shellfish contaminated with a toxin called domoic acid produced by certain marine diatoms.

Symptoms can appear 24 hours after ingestion of contaminated mollusks and may include nausea, vomiting, diarrhea, abdominal cramps and hemorrhagic gastritis. Neurological signs are severe and can take up to three days to develop. Neurological signs include dizziness, disorientation, visual disturbances, short-term memory loss, motor weakness, seizures, increased respiratory secretions and life-threatening dysrhythmias (irregular heartbeat). Death is rare. Resulting conditions due to permanent damage to the central nervous system may include short-term memory loss and peripheral neuropathy (weakness, numbness or pain as a result of nerve damage).


Certain dinoflagellates produce a toxin known as okadaic acid that can cause a diarrheic syndrome. This toxin can damage the intestinal mucous membrane making it very permeable to water, which causes significant diarrhea as well as nausea, vomiting and abdominal cramps.

Symptoms can strike within a few minutes to an hour of ingesting contaminated shellfish and can last for about one day. No life-threatening symptoms have ever been recorded, but serious dehydration may occur.


NSP is caused by a toxin called brevetoxin, naturally produced by a dinoflagellate known as Karenia brevis. Brevetoxin can cause a variety of neurological symptoms very similar to ciguatera. NSP is generally not life threatening, but hospitalization is recommended until all other possible causes have been ruled out. In the United States and the Gulf of Mexico, a blossom of Karenia brevis usually causes the phenomena known as HAB.


HABs occur throughout the world, killing millions of marine animals and affecting fisheries. Before harvesting your own seafood from coastal areas, research where HABs may occur and avoid consuming self-caught shellfish and fish from areas known to have HABs. Commercial fisheries tend to be safer than small scale artisanal harvesters.

The National Oceanic and Atmospheric Administration (NOAA) has a NOAA HAB (Red Tide) Watch page on Facebook. This system provides an operational forecast for harmful algal blooms. For those not on Facebook, NOAA’s Tides & Currents portal also provides an Operational Forecast System for HABs.

The Florida Fish and Wildlife Conservation Commission offers an online resource with a current map of Red Tide counts in the state of Florida.

Berikutnya Chapter 4 – Appendix >

Bab 4: Lampiran

“Safety is a consequence of education.”

Divers Alert Network encourages divers from all levels of certification to get first aid training so they are prepared to respond to diving injuries, including marine life injuries. The following chapter details some of the first aid techniques and treatments mentioned throughout the book including thermolysis, antivenoms and the pressure immobilization technique. However, it is important to emphasize that reading and understanding these materials is not a substitute for first aid training.

If you have not been formally trained, DAN highly recommends you find a qualified instructor. To find a First Aid for Hazardous Marine Life Injuries Instructor, visit the DAN Instructor Directory.

In this chapter, you’ll learn about:


Thermolysis describes the use of heat to break down substances (thermo meaning temperature, and lysis meaning breakdown or destruction). This is often accomplished by immersing the affected area in hot water.

Proteins are essential organic compounds that perform a vast array of functions within living organisms. Most life forms live in temperatures below 122°F (50°C).

Above this temperature, their proteins will suffer an irreversible unfolding of their three-dimensional biomolecular structure. This process has damaging consequences to their function and is called protein denaturation. Application of heat may denature venoms that are comprised of proteins, thus eliminating their effect or reducing their potency.


The standard recommendations for toxin denaturation as a first aid measure call for immersing the affected area in hot freshwater with an upper limit of 113°F (45°C) for 30 to 90 minutes. This may work reasonably well when the toxin inoculation is skin deep, like a jellyfish sting, but will be less effective when toxins have been inoculated by means of deeper puncture wounds, as is the case of lionfish spines. Though quick reasoning could call for increasing the temperature, applying higher temperatures at skin level in an attempt to reach the desired temperature at a deeper level poses an unacceptable risk of burning the skin. In addition, vasodilatation caused by exposure to elevated temperatures may expedite the onset of absorption and of systemic effects.

Each case is unique and requires some estimation of the depth to which the venom was injected; for superficial inoculations, application of heat might be useful to manage pain and denature toxins, whereas for deeper inoculations, heat is for pain management only.

Risk Considerations

If you attempt to use thermolysis as a first aid measure, minimize the risk of local tissue damage to the injured diver by testing the water on yourself first on the same area that the diver is injured. Use the hottest temperatures you can tolerate and avoid scalding. Do not rely on the victim’s assessment, as intense pain may impair his ability to evaluate temperature tolerability.

Antivenom (Antivenin, Antivenene)

Antivenom is a biological product used in the treatment of venomous bites or stings (not to be confused with antidote). Though it is rare, recreational scuba divers might incur a venomous sting from certain marine life, such as stonefish or box jellyfish, necessitating the use of antivenom. Venomous bites, such as those from sea snakes, are even more uncommon.

What is Antivenom?

Antivenoms are blood-derived biological products developed by injecting an animal—typically a horse, goat or sheep—with sublethal doses of venom. The animal will gradually develop antibodies against the venom, which can then be extracted from its blood as a serum to be administered to humans. Like most blood-derived products, antivenoms require an unbroken cold chain (proper refrigeration from production through storage until administration).

Risks Considerations

Though generally not a concern for first responders, administering antivenoms is not free of risk. Intravenous administration of animal serums can cause anaphylactic shock in susceptible individuals.

What About Antivenom Autoinjectors?

Occasionally, DAN is asked about autoinjectors for antivenoms. Conceptually, these antivenom autoinjectors would work similarly to the way epinephrine autoinjectors (like EpiPen®) work for intramuscular administration. Though it is certainly a compelling idea, antivenoms are much more complex blood-derived products than epinephrine. As such, they have a much shorter shelf life and require an unbroken cold chain. In addition, antivenoms are administered intravenously, a skill which is beyond first aid responders. These limiting factors make this idea relatively impractical for field operation.

Teknik Imobilisasi Tekanan

The pressure immobilization technique is a first aid skill intended to contain venom within the bitten area and prevent it from moving into central circulation, where the venom could affect vital organs. The technique consists of pressure to prevent lymphatic drainage and immobilization to prevent venous return (blood flow back to the heart) caused by the pumping action of skeletal muscle.


Use an elastic bandage and splinting to administer proper pressure and immobilization. An inelastic cloth is not ideal as it is difficult to achieve optimal pressure.

  1. Begin bandaging a few inches above the bite site (between the bite and the heart).
  2. Wind the bandage around the limb with overlapping turns moving up the limb and then back down past the bite site.
  3. The wrap should be tight enough to administer pressure, but you should still have normal feeling, color and a palpable pulse.
  4. Use a splint or suitable substitute to immobilize the limb.
  5. If possible, hold upper extremities with a sling.

The Heart & Diving

Kesehatan kardiovaskular adalah komponen penting dari keselamatan scuba diving. Namun, kesehatan jantung dapat memburuk secara bertahap seiring bertambahnya usia dan dapat membahayakan penyelam. Buku ini mencakup konsep dasar fungsi jantung normal dalam aktivitas fisik, persyaratan kebugaran fisik menyelam, bagaimana penyakit jantung dapat mempengaruhi kebugaran menyelam dan bagaimana penyelam dapat mempertahankan kapasitas kebugaran mereka.

In this book, you’ll learn about:


Managing Editor: Petar Denoble, MD, DSc
Editor: James Chimiak, MD

Chapter 1: Basics of Your Heart & Circulatory System

“Nearly 1/3 of all diving fatalities are associated with an acute cardiac event.”

Scuba diving is an appealing recreational activity for people of all ages. Indeed, diving in favorable conditions requires little exertion, making it easy for the uninitiated to assume that diving is a safe and effortless pastime. But it is essential to keep in mind that during any dive, perilous conditions and circumstances can arise that may call for vigorous exercise on a moment’s notice.

Immersion alone is a stressor on the body, especially the heart and circulatory system. People who have limited exercise capacity may be pushed to their limit by diving — to the point of serious injury and even death. This chapter explains some basic information about the heart in relation to diving to help keep you safe and healthy as you dive.

In this chapter, you’ll learn about:

Bagaimana Menyelam Mempengaruhi Kesehatan dan Sistem Peredaran Darah Anda

Illustration of the human heart and upper cardiovascular system

Scuba diving exposes you to many effects, including immersion, cold, hyperbaric gases, elevated breathing pressure, exercise and stress, as well as a postdive risk of gas bubbles circulating in your blood. Your heart’s capacity to support an elevated blood output decreases with age and with disease. Having a healthy heart is of the utmost importance to your safety while scuba diving, as well as to your ability to exercise generally and your life span. The information in this booklet is devoted to helping you understand how heart disease can affect you while you’re diving and how you can promote optimal heart health.

Efek Perendaman

Perendaman dalam air di dekat suhu tubuh manusia memaparkan tubuh Anda pada gradien tekanan yang menggeser darah dari pembuluh di kaki Anda ke pembuluh di rongga dada Anda. Ini meningkatkan volume darah di dalam dada Anda hingga 24 ons (700 mililiter). Dengan demikian, jantung Anda menerima tambahan 6 hingga 8 ons (180 hingga 240 mililiter) darah, yang mengakibatkan pembesaran keempat bilik, peningkatan tekanan di atrium kanan Anda, peningkatan lebih dari 30 persen dalam curah jantung dan peningkatan tekanan darah. sedikit peningkatan tekanan darah Anda secara keseluruhan.

Baroreceptors (sensors that perceive a change in blood pressure) within your body’s major vessels react to all these changes by decreasing the activity of your sympathetic nervous system, which governs what’s popularly called the “fight-or-flight” response. As a result, your heart rate declines and the concentration in your plasma of norepinephrine, a hormone of the sympathetic nervous system drops; in response to the drop in norepinephrine, your kidneys excrete more sodium, and your urine production increases.

Efek Dingin

Water has high thermal conductivity—that is, your body loses more heat when you’re immersed in water than when you’re in dry air. You’ll feel more comfortable at a given air temperature than when you’re immersed in water of the same temperature. And when your body loses heat, that intensifies the narrowing of your peripheral blood vessels (a condition known as “peripheral vasoconstriction”). This in turn sends more blood to your heart, which increases the filling pressure on the right side of your heart and makes it pump more blood. Constriction of the body’s small arteries also increases the resistance to blood flowing through the periphery of your body, which raises your blood pressure, meaning your heart has to exert itself more to maintain an adequate flow of blood throughout your body.

Efek Tekanan

Breathing air under increased pressure, as you do when scuba diving, also affects your heart and circulatory system. Increased levels of oxygen cause vasoconstriction, increase your blood pressure and reduce your heart rate and heart output. And increased levels of carbon dioxide—which may accumulate in the body when you exercise during a dive, due to reduced pulmonary ventilation caused by dense gases—can increase the flow of blood through your brain, which can speed up oxygen toxicity if you’re breathing a hyperoxic gas mix (one with an elevated level of oxygen).

Efek Latihan

Diving can be very physically demanding, but recreational divers have the option of choosing diving conditions and activities that typically do not require a lot of exertion. Nevertheless, any dive places some metabolic energy demands on your body. For example, slow, leisurely swimming on the surface represents a moderate-intensity activity (see Table 2 on page 11), while swimming with fins on the surface requires up to 40 percent less energy than barefoot swimming. But the addition of scuba equipment increases drag on the swimmer and thus the energy cost of swimming. A 1996 paper in the journal Medicine & Science in Sports & Exercise showed that wearing just one scuba tank may increase a diver’s energy consumption by 25 percent over regular surface swimming at the same speed, and that using a drysuit may result in another 25 percent increase in energy consumption.

Kebanyakan penyelaman dengan daya apung netral dan tanpa arus hanya memerlukan interval pendek dari renang intermiten dengan kecepatan lambat dan dengan demikian mewakili latihan intensitas rendah hingga sedang. Intensitas latihan diukur dengan nilai yang dikenal sebagai ekuivalen metabolik (MET), dengan 1 MET mewakili jumlah energi yang dikonsumsi saat istirahat. (Lihat halaman 11 untuk penjelasan rinci tentang perhitungan MET.) Disarankan agar penyelam dapat mempertahankan latihan pada 6 MET untuk jangka waktu 20 hingga 30 menit. Karena orang hanya dapat mempertahankan sekitar 50 persen dari kapasitas latihan puncak mereka untuk waktu yang lama, disarankan agar penyelam dapat lulus tes stres latihan pada 12 MET.

Efek Stres

Your autonomic nervous system (ANS)—the largely involuntary system that regulates internal functions, such as your heart rate, respiratory rate and digestion—is affected by diving, too. Among the components of the ANS are the sympathetic and parasympathetic systems; while the sympathetic system governs your body’s “fight-or-flight” response, the parasympathetic system governs resting functions and helps your body conserve energy. In healthy individuals, diving generally increases parasympathetic effects, preserving the heart rate and a measure known as heart rate variability. A dive that is perceived as stressful, however, pushes the ANS in the other direction, meaning sympathetic effects prevail—resulting in an increase in the heart rate, a decline in heart rate variability and an increase in the risk of arrhythmia.

Efek Samping yang Serius

Most of the effects that diving has on your heart and circulatory system fall within your body’s capacity to adapt, but sometimes serious adverse reactions can occur. A reaction known as bradyarrhythmia (a very slow and irregular heartbeat) can cause sudden death upon a diver’s entry into the water, especially in individuals with a preexisting rhythm anomaly. Conversely, tachyarrhythmia (a very rapid and irregular heartbeat) can also cause sudden death, especially in divers with structural or ischemic heart disease. And overexertion or the effects of stress may strain the heart and result in acute manifestations of previously undiagnosed ischemic heart disease.

Menyelam dengan menahan napas dapat memiliki efek samping yang serius terhadap jantung; efek ini terjadi secara berurutan dalam waktu yang cepat dalam sebuah
response known as the “diving reflex.” Its most significant elements include bradycardia (a slowing of the heart rate);
reaksi vasokonstriksi perifer yang dijelaskan di atas; dan hipoksia progresif (atau kurangnya pasokan
oksigen). Untuk menghindari paru-paru pecah, penyelam scuba tidak boleh menahan napas selama naik menuju permukaan.

Kesehatan Jantung dan Risiko Kematian Saat Menyelam

Statistics show that about one-third of all diving fatalities are associated with an acute cardiac event. In a recent study of DAN members, the incidence of diving-related deaths overall was determined to be 16 per 100,000 divers per year, and of diving-related deaths due to cardiac causes, to be nearly a third of that number—5 per 100,000 divers per year. It is of particular note that the risk of cardiac-related death while diving is 10 times higher in divers over age 50 than in those under 50. Indeed, the study of DAN members showed a continuous increase in risk with increasing age. While some suspected cardiac events may be provoked by dive-specific activities or situations, other cardiac events may not be caused by a dive at all—inasmuch as sudden cardiac death also occurs while engaged in surface swimming or land-based sporting activities of various sorts and even while at rest or during sleep.

Acute myocardial infarctions (commonly known as “heart attacks”) that are brought on by exertion — such as while swimming against a current, in heavy waves or under conditions of excessive negative buoyancy — are likely involved in some dive-provoked fatalities. Heart attacks are caused by an insufficient blood supply to the muscles of the heart; diving-related heart attacks typically occur in middle-aged males with undiagnosed coronary artery disease.

Diving (or just immersion) may also provoke acute arrhythmias, or disturbances of the heart’s rhythm, that can likewise result in sudden death. Arrhythmias are more likely to cause death in older divers. As Dr. Carl Edmonds explains in his book Diving and Subaquatic Medicine, and DAN data confirms, “The victim often appeared calm just before his final collapse. Some were unusually tired or resting, having previously exerted themselves, or were being towed at the time—suggesting some degree of exhaustion. Some acted as if they did not feel well before their final collapse. Some complained of difficulty in breathing only a few seconds before the collapse, whereas others underwater signaled that they needed to buddy breathe, but rejected the offered regulator. Explanations for the dyspnea include psychogenic hyperventilation, autonomic induced breathing stimulation and pulmonary edema—the latter being demonstrated at autopsy. In all cases there was an adequate air supply available, suggesting that their dyspnea was not related to equipment problems. Some victims lost consciousness without giving any signal to their buddy, whereas others requested help in a calm manner.”

Insiden kematian jantung mendadak (SCD) juga meningkat seiring bertambahnya usia. Pola SCD serupa di antara penyelam dan di antara populasi umum; namun demikian, penting bagi penyelam untuk tidak mengabaikan kemungkinan adanya hubungan kausatif antara penyelaman dan SCD. Kasus SCD di mana tidak ada faktor pemicu eksternal yang jelas terjadi lebih sering pada penyelam yang lebih tua. Pemeriksaan postmortem korban SCD lebih mungkin untuk mengungkapkan tanda-tanda penyakit jantung yang tidak terduga sebelumnya daripada peristiwa pencetus tertentu. Cara terbaik untuk mencegah SCD adalah dengan mencegah penyakit jantung dan menjaga kebugaran dan kesehatan fisik seiring bertambahnya usia.

Memahami Konsep Kapasitas Latihan Aerobik

Your capacity for sustained physical activity depends on the amount of energy your body can produce in a process using oxygen called aerobic capacity. Your individual aerobic capacity depends on how well your cardiovascular system—your heart and blood vessels—works. It’s the system that moves your blood through your lungs, where it’s loaded with oxygen, and then distributes it to every part of your body, where the oxygen sustains life, nourishes your muscles and supports your ability to exercise. The “motor” of the circulatory system is the heart. The heart is a pump made of live tissue: muscles, supportive tissue and a conduction system that produces the electrical signals which stimulate your heart’s pumping action. An empty heart weighs an average of a little over half a pound (250 to 300 grams) in females and between two-thirds and three-quarters of a pound (300 to 350 grams) in males. It has four chambers: the right atrium, right ventricle, left atrium and left ventricle.

The atria receive blood at low pressure. The right atrium receives venous blood returning to the heart from all over the body after it’s been depleted of oxygen. The left atrium receives blood returning to the heart from the lungs after it’s been enriched again with oxygen. The ventricles do most of the pumping. The right ventricle pumps blood to and through the lungs, while the left ventricle maintains the circulation of blood throughout the body, to all its organs and tissues. Blood flows through the heart in only one direction, thanks to a system of valves that open and close at just the right time. How hard your heart has to work varies depending on many factors, including your activity level.

On average, a human heart pumps about 2.4 ounces (70 milliliters) of blood per heartbeat—a measure that’s known as “stroke volume.”

The heart of an individual at rest beats, on average, 72 times per minute (this is your “heart rate”), which results in a cardiac output as follows:

  • 1,3 galon (5 liter) darah per menit.
  • 1.900 galon (7.200 liter) per hari.
  • 700.000 galon (2.628.000 liter) per tahun.
  • 48 juta galon (184 juta liter) selama rentang hidup rata-rata 70 tahun.

And that output is just to meet the body’s basic metabolic needs at rest: about 3.5 milliliters of oxygen per kilogram of body mass per minute. This resting metabolic rate is designated as one metabolic equivalent, which is expressed as “1 MET.” When you exercise, your body’s muscles require more oxygen, so your blood flow increases to meet that need; your heart rate may increase threefold and your stroke volume may double. This increases the cardiac output of a person of average fitness from about 1.3 gallons (5 liters) per minute to between 4 and 5 gallons (15 and 20 liters) per minute, and of a top athlete to as much as 10 gallons (40 liters) per minute. And not only does the blood flow increase, but more oxygen is extracted from each unit of blood. As a result of these changes, the metabolic level of a person of average fitness exercising at peak capacity increases to about 12 METs, and of a top athlete running a 4:17 mile (or a 22.5-kilometers-per-hour pace) may increase to 23 METs.

Efek Penuaan pada Sistem Kardiovaskular Anda

An individual’s ability to sustain a high level of exercise for a prolonged period of time decreases with age, even with healthy aging. This decline can be slowed by regular exercise, but it cannot be avoided completely. The decline is caused by a weakening of the functions of all the body’s systems, though the focus here is on the heart.

The heart has a pacing system that controls the heartbeat and regulates the electrical signals that stimulate the heart’s pumping action. Over time, this natural pacemaker loses some of its cells, and some of its electrical pathways may get damaged. These changes can result in a slightly slower heart rate at rest and a greater susceptibility to abnormal rhythms (the most common of which is known as “atrial fibrillation”).

With increasing age, all the structures of the heart also become more rigid. The muscles of the left ventricle get thicker, the heart may increase slightly in size and the volume of the left ventricle may decline. As a result, the heart may both fill and empty more slowly, thus putting less blood into circulation. The increase in one’s heart rate and cardiac output in response to physical activity is also diminished, and one’s maximum heart rate declines. The drop in maximum heart rate appears to be greater than average in sedentary individuals and in those with overt cardiovascular disease.

Table - Maximum Heart Rate by Age
* The traditional formula for calculating maximum heart rate, proposed in the 1970s, was 220 less the individual’s age.
+ Tanaka and coauthors proposed an updated formula in 2001 for healthy nonsmokers of 208 less 7/10ths of the individual’s age.
Source: Modified from “Age-predicted maximal heart rate revisited” by H. Tanaka H et al. Journal of the American College of Cardiology; 2001; Vol. 37; pages 153-156

The autonomous nervous system changes with age, too. Normally, its parasympathetic component sets the level of the heart rate at rest, while its sympathetic component governs the heart in anticipation of and in response to physical activity—stimulating a timely and appropriate increase in blood flow to support the activity. Continuous adjustments between the sympathetic and parasympathetic systems result in minute variations in the heart rate (a factor known as “heart rate variability”) that are evident on a beat-to-beat basis—the kind of sensitive regulation that is a signature of a healthy control system. With increasing age, however, the contribution of the parasympathetic system wanes; the sympathetic system’s activity increases, even at rest; heart rate variability disappears; and the heart’s rhythm becomes more prone to disruption. This age-related falloff in heart rate variability and increase in resting heart rate (due to the decline in parasympathetic activity) are responsible for a 2.6-fold increased risk of SCD.

Menghitung Intensitas Aktivitas Fisik

Table 2. Average Metabolic Energy Requirements for Selected Physical Activities

The intensity of any physical activity can be calculated directly—by measuring the amount of oxygen you use for energy metabolism (a factor that’s abbreviated as VO2, short for “volume of oxygen”) per minute of exercise—or indirectly—by measuring your heart rate and using that value as an index of the strain your exertion is placing on your heart and lungs.

Pengukuran Intensitas Latihan Langsung

The amount of energy you use at any given time is proportional to the amount of oxygen your body requires. At rest, the average healthy person uses roughly 3.5 milliliters of oxygen per kilogram of body weight per minute; this is known as “resting metabolic rate.” The energy cost of a physical activity can be expressed as a multiple of resting metabolic rate; this is known as “metabolic equivalent of task,” or simply metabolic equivalent, and is abbreviated as MET.

An individual of average fitness can achieve about a 12-fold increase in metabolic rate (which is expressed as “12 METs”), while top athletes can exceed a 20-MET increase.

Tabel di sebelah kanan mencantumkan contoh aktivitas yang diklasifikasikan sebagai intensitas ringan, sedang, atau kuat, berdasarkan jumlah energi yang diperlukan untuk melakukannya.

Sources: “Compendium of physical activities: an update of activity codes and MET intensities”; “Oxygen consumption in underwater swimming”; and “Oxygen uptake studies of divers when fin swimming with maximum effort at depths of 6–176 feet” (see the list of bacaan lebih lanjut di halaman 53 untuk rincian tentang sumber-sumber ini).

An individual’s peak aerobic capacity is expressed as maximum oxygen uptake while engaged in all-out exercise (which is abbreviated as “VO2 max”). Measuring VO2 max accurately requires following strict protocols in a sports-performance lab – a procedure known as a “maximal exercise test.” Conducting such tests is time-consuming and expensive, so they are used only in special situations.

EKG measures heart rate

Estimasi Intensitas Latihan Tidak Langsung

It is also possible to make a relative estimate of an activity’s intensity by measuring its effects on your heart rate and respiration rate. This can be done in several ways.

Tes bicara: Jika rata-rata orang sehat dapat berbicara tetapi tidak bernyanyi saat berolahraga, aktivitas tersebut dianggap dengan intensitas sedang. Seseorang yang terlibat dalam aktivitas intensitas tinggi tidak dapat mengucapkan lebih dari beberapa kata tanpa berhenti sejenak untuk menarik napas. Jika Anda harus terengah-engah dan tidak dapat berbicara selama apa yang umumnya dianggap sebagai latihan intensitas sedang, itu berarti kapasitas fisik Anda di bawah rata-rata.

Heart rate test: Your heart rate rises in a regular fashion as the intensity of your activity increases (though the maximum heart rate you’re able to achieve will decline as you age). You can figure the average maximum heart rate for healthy individuals your age by subtracting your age from 220. For example, the maximum heart rate for a 50-year-old would be calculated as follows: 220 – 50 = 170 beats per minute (bpm). You can then use your actual heart rate to estimate the relative intensity of various activities you engage in and to indirectly estimate your maximum exercise capacity. Experts often recommend reaching and sustaining a certain heart rate to improve or maintain fitness.

Submaximal exercise test: A submaximal exercise test can be used to figure your maximum exercise capacity without exceeding 85 percent of the estimated maximum heart rate for your age. Conducting such a test calls for gradually increasing your exercise intensity, based on a defined protocol, while your heart rate is being monitored. When you reach the target heart rate, you stop exercising and your maximum exercise capacity can then be extrapolated using various methods. However, because of variations in the relationship between heart rate and exercise intensity due to age, fitness level and other factors, an indirect estimation of maximum aerobic capacity has limited value. Nevertheless, the test is still a valuable clinical tool to assess an individual’s tolerance for exercise and likelihood of having ischemic heart disease.

Rekomendasi Aktivitas Fisik

Adults need two types of regular activity to maintain or improve their health—aerobics and strength training. The Centers for Disease Control and Prevention’s 2008 Physical Activity Guidelines for Americans recommends at least two and a half hours a week of moderate-intensity aerobic exercise to achieve health benefits, and five hours a week to achieve additional fitness benefits. And just as important as engaging in aerobic exercise is doing muscle-strengthening activities at least two days a week.

Aktivitas fisik biasanya diklasifikasikan berdasarkan intensitas ke dalam salah satu dari empat kategori berikut:

  • PERILAKU SEDENTER: Sedentary behavior refers to activities that do not substantially increase one’s heart rate or energy expenditure above the resting level; included in this category are activities like sleeping, sitting, lying down and watching television. Such activities involve an energy expenditure of 1.0 to 1.5 METs.
  • AKTIVITAS FISIK INTENSITAS RINGAN: Light physical activity—which is often grouped with sedentary behavior but is, in fact, a distinct activity level—involves an energy expenditure of between 1.6 and 2.9 METs and raises the heart rate to less than 50 percent of one’s maximum heart rate. It encompasses such activities as slow walking, deskwork, cooking and washing dishes.
  • AKTIVITAS FISIK INTENSITAS SEDANG: Physical activity that increases the heart rate to between 50 percent and 70 percent of one’s maximum heart rate is considered to be of moderate intensity. For example, 50-year-olds have an estimated maximum heart rate of 170 beats per minute (bpm), so the 50-percent and 70-percent levels would be 85 bpm and 119 bpm. That means a moderate intensity activity for 50-year-olds is one that keeps their heart rate between 85 bpm and 119 bpm. By contrast, 30-year-olds have an estimated maximum heart rate of 190 bpm, making a moderate-intensity activity one that raises their heart rate to between 95 bpm and 133 bpm.
  • AKTIVITAS FISIK INTENSITAS KUAT: A vigorous-intensity activity is one that increases the heart rate to between 70 percent and 85 percent of one’s maximum heart rate. For 60-year-olds, that would be between 122 bpm and 136 bpm; for 25-year-olds, it would be between 136 bpm and 167 bpm.

Rekomendasi aktivitas fisik terperinci dapat ditemukan di

Penyaringan Pra-Kegiatan

Engaging in physical activity is beneficial for one’s health, but making the transition from a sedentary lifestyle to being physically active, or increasing one’s accustomed level of activity, may be associated with increased risk—especially in individuals with preexisting heart disease. Scuba diving typically involves moderate intensity physical activity, but situations can occur that require high-intensity activity. In addition, scuba diving challenges the cardiovascular system in a variety of ways that may be life-threatening for individuals with heart disease or a low capacity for exercise.

A common pre-activity screening tool is the Recreational Scuba Training Council (RSTC) Medical Statement and Guidelines. The RSTC questionnaire asks about your medical history, as well as symptoms and signs of chronic and acute diseases. If prospective divers have any of the listed conditions, they are advised to consult with a physician to obtain a medical evaluation of their fitness to dive. Most dive operators use the RSTC form to screen customers, and if you check any conditions that call for medical evaluation but cannot present documentation of a recent exam that has cleared you for diving, you may be unable to dive. So you should complete the RSTC Medical Statement in advance of any trip during which you plan to dive and, if necessary, obtain a written evaluation from a physician knowledgeable about diving medicine—and take it with you on your trip.

Dan ingat bahwa sangat penting bagi Anda untuk jujur dalam mengisi kuesioner: Anda memegang kunci partisipasi yang aman dalam aktivitas fisik apa pun, termasuk menyelam scuba.

In addition, regardless of their medical condition, men age 45 and older and women age 50 and older are advised to review their health annually with their primary-care physician. And all divers with any risk factors for cardiac disease should see their primary-care physician before engaging in diving and should be sure to follow any advice they’re given.

Menempatkan Risiko dan Manfaat Aktivitas Fisik dalam Perspektif

people wearing sneakers running on the grass on a sunny day

In general, engaging in regular physical activity reduces an individual’s risk of death due to heart disease—but in susceptible individuals, vigorous activity can increase the risk of an acute myocardial infarction (heart attack) or of sudden cardiac death (SCD). Individuals with advanced atherosclerosis—a disorder that involves a narrowing of the arteries due to a buildup of fatty deposits on their inner walls—are especially susceptible to such risks.

Insiden infark miokard akut dan SCD paling besar pada individu yang umumnya tidak aktif, terutama mereka yang melakukan aktivitas fisik yang tidak biasa. Sebuah makalah yang diterbitkan di New England Journal of Medicine menemukan bahwa pria yang tidak banyak bergerak memiliki kemungkinan 56 kali lebih besar mengalami kematian jantung selama atau setelah olahraga berat daripada saat istirahat; sebaliknya, pria yang sangat aktif secara fisik hanya lima kali lebih mungkin meninggal selama atau setelah olahraga berat daripada saat istirahat. Makalah New England Journal of Medicine lainnya melaporkan bahwa infark miokard akut adalah 50 kali lebih mungkin selama atau segera setelah latihan fisik yang kuat pada subjek yang paling tidak aktif daripada subjek yang paling aktif.

So while sedentary individuals are advised to change their lifestyle and take up regular physical exercise—starting with low-intensity activities and gradually increasing the intensity at which they exercise—they may require pre-activity screening. Individuals with any health limitations need both medical clearance and, preferably, a professional fitness coach. Individuals identified as being at high risk for cardiac problems should abstain from certain activities. For relevant guidelines, read “When to consult a health-care provider before engaging in physical activities.”

It is important to emphasize, however, that even the most restrictive practices will never be able to completely prevent cardiovascular events associated with exercise. It is thus essential that individuals who exercise recognize and report the symptoms that often precede a cardiac event; these are known as “prodromal symptoms” and may include one or more of the following:

  • Chest pain (known as “angina”).
  • Kelelahan meningkat.
  • Gangguan pencernaan, mulas atau gejala gastrointestinal lainnya.
  • Sesak napas yang berlebihan.
  • Sakit telinga atau leher.
  • Perasaan tidak enak badan yang samar-samar.
  • Infeksi saluran pernapasan atas.
  • Pusing, palpitasi atau sakit kepala parah.

Gejala seperti itu telah terbukti hadir pada 50 persen pelari, 75 persen pemain squash, 81 persen pelari jarak jauh, dan 60 persen penyelam scuba yang meninggal saat berolahraga. Orang yang berolahraga harus menyadari fakta ini, dan dokter harus menanyakan pasien selama pemeriksaan medis tentang kebiasaan olahraga mereka dan pengetahuan mereka tentang gejala prodromal. Penyelam yang mengalami salah satu gejala di atas selama berolahraga harus mendapatkan evaluasi medis sebelum mereka melanjutkan menyelam.

Berikutnya Chapter 2 – Risk Factors for Cardiovascular Disease >

Bab 4: Penyakit Jantung Iskemik

“Heart disease develops 7 to 10 years later in women than in men.”

Ischemia is a term meaning that an inadequate supply of blood is reaching a part of the body. Ischemic heart disease thus means not enough blood is getting to the heart muscle. It is almost always caused by atherosclerosis (a narrowing of the arteries due to fatty deposits on their inner walls) in the coronary arteries (the arteries that supply the heart muscle), and it is the most common cause of heart disease. The prevalence of ischemia increases with age. The first manifestation of ischemic heart disease is sometimes a fatal heart attack, but the condition’s presence may be signaled by symptoms that should prompt lifesaving actions. Knowing these symptoms can mean living longer. And preventing heart disease in general means living happier — without symptoms or functional limitations.

In this chapter, you’ll learn about:


Illustration of the progression of atherosclerosis

Atherosclerosis is popularly referred to as “hardening of the arteries.” It’s the result of cholesterol and other fatty material being deposited along the inner walls of the arteries. The condition has different manifestations, depending on which arteries are affected; it causes coronary artery disease (CAD) in the heart, cerebrovascular atherosclerosis in the brain and peripheral artery disease (PAD) in the limbs.

Dinding arteri, sebagai respons terhadap pengendapan bahan lemak, juga menebal. Hasilnya adalah pengurangan progresif dalam aliran darah melalui pembuluh yang terkena. Efek ini terutama merusak jantung; CAD adalah penyebab utama kematian di Amerika Serikat dan negara industri lainnya.

Banyak faktor yang berkontribusi terhadap perkembangan aterosklerosis, termasuk diet tinggi lemak dan kolesterol, merokok, hipertensi, bertambahnya usia dan riwayat keluarga dengan kondisi tersebut. Wanita usia reproduksi umumnya berisiko lebih rendah mengalami aterosklerosis karena efek perlindungan dari estrogen.

Medications typically used to treat atherosclerosis include nitroglycerin (which is also used in the treatment of angina, or chest pain) and calcium channel blockers and beta blockers (which are also used in the treatment of high blood pressure, or hypertension; see “Antihypertensives” for more on these drugs). Sometimes, individuals with CAD may need what’s known as a revascularization procedure, to re-establish the blood supply — typically a coronary artery bypass graft or angioplasty. If such a procedure is successful, the individual may be able to return to diving after a period of healing and a thorough cardiovascular evaluation (see “Issues Involving Coronary Artery Bypass Grafts.”).

Efek pada Menyelam

Symptomatic coronary artery disease is not consistent with safe diving: don’t dive if you have CAD. The condition results in a decreased delivery of blood — and therefore oxygen — to the muscular tissue of the heart. Exercise increases the heart’s need for oxygen. Depriving your heart of oxygen can lead to abnormal heart rhythms and/or myocardial infarction, (a heart attack). The classic symptom of CAD is chest pain, especially following exertion. But unfortunately, many people have no symptoms before they experience a heart attack.

A history of stroke — or of “mini strokes” known as transient ischemic attacks (TIAs) — are also, in most cases, not consistent with safe diving.

Penyakit kardiovaskular merupakan penyebab kematian yang signifikan di antara para penyelam. Penyelam yang lebih tua dan mereka yang memiliki faktor risiko signifikan untuk penyakit arteri koroner harus menjalani evaluasi medis rutin dan menjalani studi penyaringan yang sesuai, seperti tes stres treadmill.

Myocardial Infarction

When any of the arteries supplying the heart become blocked, a myocardial infarction, or heart attack, will occur if the blockage (or “infarct”) is not eliminated quickly. The heart muscle supplied by that artery then becomes starved for oxygen and eventually dies. If the infarct is large enough, the heart’s ability to pump blood is compromised, and circulation to all the body’s other critical organs is affected. The heart’s electrical system may also be adversely affected, resulting in an abnormal rhythm known as ventricular fibrillation.

Anatomy of a heart attack (illustration)

The main cause of myocardial infarction is coronary artery disease (CAD), or a gradual narrowing of the arteries that supply the heart with blood. Eventually, a piece of the fatty plaques affixed to the arteries’ inner walls may break free and lodge in a smaller vessel, resulting in total occlusion. CAD affects 3 million Americans and kills more than 700,000 each year; it is the most common life-threatening disease. A blockage that results in a myocardial infarction can also be caused by a bubble of gas or a clot within a blood vessel. But, simply stated, whatever the cause of the occlusion, it means the oxygen required by the heart muscle can no longer be supplied through the blocked vessel.

Gejala klasik infark miokard termasuk nyeri dada yang menjalar (angina) atau nyeri di rahang atau lengan kiri. Gejala lain termasuk jantung berdebar-debar; pusing; gangguan pencernaan; mual; berkeringat; kulit dingin dan lembap; dan sesak napas.

Jika dicurigai adanya infark miokard, sangat penting bahwa perawatan medis darurat dipanggil dan individu yang terkena dievakuasi ke rumah sakit. Sementara itu, jaga agar individu tetap tenang dan berikan oksigen. Di rumah sakit, pilihan pengobatan termasuk manajemen medis konservatif, obat antikoagulasi, kateterisasi jantung atau stenting atau bahkan operasi bypass arteri koroner.

Mencegah infark miokard memerlukan penanganan faktor risiko apa pun, seperti obesitas, diabetes, hipertensi, atau merokok. Diet sehat dan olahraga teratur juga merupakan pencegahan penting.

Efek pada Menyelam

Anyone with active ischemic CAD should not dive. The physiologic changes involved in diving, as well as the exercise and stress of a dive, may initiate a cascade of events leading to a myocardial infarction or to unconsciousness or sudden cardiac arrest while in the water. Divers who have been treated and evaluated by a cardiologist may choose to continue diving on a case-by-case basis; essential aspects of such an evaluation include the individual’s exercise capacity and any evidence of ischemia while exercising, of arrhythmias or of injury to the heart muscle.

Coronary Artery Bypass Grafts

A coronary artery bypass is the surgical correction of a blockage in a coronary artery; it is accomplished by attaching (or “grafting”) onto the damaged vessel a piece of a vein or artery from elsewhere in the body, so as to circumvent the blockage.

Illustration of a coronary artery bypass

Doctors perform this procedure many hundreds of times a day, all around the country — more than half a million times a year. If a bypass is successful, the individual should be free of the symptoms of coronary artery disease, and the heart muscle should once again receive a normal supply of blood and thus oxygen.

Arteri koroner yang tersumbat juga dapat diobati dengan prosedur yang kurang invasif, angioplasti koroner. Ini terdiri dari memasukkan kateter dengan balon kecil di ujungnya ke area penyumbatan, kemudian menggembungkan balon untuk membuka arteri. Prosedur ini tidak memerlukan pembukaan dada dan dapat dilakukan dalam pengaturan rawat jalan.

Efek pada Menyelam

Individu yang telah menjalani cangkok bypass arteri koroner atau angioplasti koroner mungkin telah mengalami kerusakan jantung yang signifikan sebelum menjalani operasi. Fungsi jantung pascaoperasi mereka yang menentukan kebugaran mereka untuk kembali menyelam.

In particular, those who have had open-chest surgery need to have a thorough medical evaluation prior to diving again. After a period of stabilization and healing (6 to 12 months is the usual recommendation), such individuals should have a complete cardiovascular evaluation before being cleared to dive. They should be free of chest pain and have a normal tolerance for exercise, as evidenced by a normal stress EKG test (at 13 METs, as described in “Calculating Physical Activity Intensity”). If there is any doubt about the success of the procedure, or how open the coronary arteries are, the individual should refrain from diving.

Isu Khusus pada Wanita

Penyakit jantung adalah penyebab utama kematian pada wanita, dan infark miokard (serangan jantung) adalah penyebab utama rawat inap mereka. Karakteristik penyakit pada wanita mungkin berbeda dari pada pria; usia onset, adanya faktor risiko, kemungkinan diagnosis agresif dan bahkan kemungkinan pengobatan yang tepat bervariasi pada pria dan wanita.

Misalnya, penyakit jantung berkembang 7 sampai 10 tahun kemudian pada wanita dibandingkan pada pria (mungkin karena efek perlindungan dari estrogen). Infark miokard lebih jarang terjadi pada wanita muda dibandingkan pria muda, tetapi wanita muda yang mengalami serangan jantung memiliki risiko kematian yang lebih besar dalam 28 hari setelah serangan. Faktor risiko umum untuk penyakit jantung memiliki nilai prediksi yang sama untuk pria dan wanita; namun, pria lebih sering merokok sebagai faktor risiko, sedangkan wanita lebih sering menderita hipertensi, diabetes, hiperlipidemia, atau angina. Meskipun wanita biasanya merokok lebih sedikit daripada pria, risiko relatif untuk infark miokard pada wanita yang merokok adalah 1,5 hingga 2 kali lebih besar daripada pria yang merokok, terutama pada mereka yang berusia kurang dari 55 tahun. Prevalensi diabetes yang lebih tinggi juga berkontribusi pada tingkat kematian yang lebih tinggi dari serangan jantung di kalangan wanita.

Wanita menerima lebih sedikit tes diagnostik lanjutan seperti angiografi koroner dan lebih sedikit intervensi seperti cangkok bypass arteri koroner. Perbedaan ini mungkin disebabkan oleh fakta bahwa serangan jantung akut kemungkinan besar terjadi pada wanita pada usia yang lebih tua, atau adanya penyakit terkait lainnya, tetapi dapat juga karena keterlambatan dalam memasukkan wanita ke rumah sakit.

Woman suffers pain discomfort in the jaw

The symptoms of a heart attack in women are usually the same as those in men, with chest pain (angina) being the leading symptom. However, women are more likely to attribute their symptoms to acid reflux, the flu or normal aging. In addition, the chest pain that women experience does not necessarily occur in the center of the chest or the left arm; instead, women may feel pressure in their upper back — a sensation of squeezing or as if a rope is tied around them.

Meskipun 90 persen wanita yang menderita serangan jantung kemudian mengakui bahwa mereka secara intuitif tahu bahwa itu adalah penyebab gejala mereka, pada saat mereka sering mengabaikannya, menghubungkannya dengan sesuatu yang lain, minum aspirin atau hanya menunda menelepon 911. Ini mengurangi kesempatan untuk menjaga jantung mereka dari kerusakan dan menurunkan kesempatan mereka untuk bertahan hidup.

Ini adalah gejala paling umum dari serangan jantung pada wanita:

  1. Tekanan yang tidak nyaman, remasan, rasa penuh atau nyeri di bagian tengah dada; itu berlangsung lebih dari beberapa menit atau hilang dan kembali
  2. Nyeri atau ketidaknyamanan pada satu atau kedua lengan, punggung, leher, rahang atau perut
  3. Sesak napas, dengan atau tanpa rasa tidak nyaman di dada
  4. Tanda-tanda lain, seperti berkeringat dingin, mual atau pusing
  5. As with men, women’s most common heart attack symptom is chest pain or discomfort — but women are somewhat more likely than men to experience some of the other common symptoms, particularly shortness of breath, nausea/vomiting or back or jaw pain.

Sumber: American Heart Association

Berikutnya Chapter 5 – Arrhythmias >

Bab 5: Aritmia

“By 2050, it is estimated that atrial fibrillation (AFib) will affect between 5.6 million and 12 million Americans.”

The electrical wiring of your heart — which controls the rate at which your heart beats, every minute, hour and day, 365 days a year — is one of the most sophisticated and enduring pieces of nature’s engineering. However, there are some irregularities that can occur in that wiring as well as damage that can be caused by disease, all of which can cause symptoms and increase the risk of premature death. Divers, and any physicians who treat them, should be familiar with arrhythmias and their effects on the safety of scuba divers.

In this chapter, you’ll learn about:

Sekilas Tentang Aritmia

The term “arrhythmia” (or, sometimes, “dysrhythmia”) means an abnormal heartbeat. It is used to describe manifestations ranging from benign, harmless conditions to severe, life-threatening disturbances of the heart’s rhythm.

A normal heart beats between 60 and 100 times a minute. In well-trained athletes, or even select nonathletic individuals, the heart may beat at rest as slowly as 40 to 50 times a minute. Even entirely healthy, normal individuals experience occasional extra beats or minor changes in their heart’s rhythm. These can be caused by drugs (such as caffeine) or stress or can occur for no apparent reason. Arrhythmias become serious only when they are prolonged or when they do not result in proper contraction of the heart.

Physiologically significant extra heartbeats may originate in the upper chambers of the heart (this is called “supraventricular tachycardia”) or in the lower chambers of the heart (this is called “ventricular tachycardia”). The cause of these extra beats may be a short circuit or an extra conduction pathway in the heart’s wiring, or it may be the result of some other cardiac disorder. People who have episodes or periods of rapid heartbeat are at risk of losing consciousness during such events. Other people have a fairly stable arrhythmia (such as “fixed atrial fibrillation”) but in conjunction with additional cardiovascular disorders or other health problems that exacerbate the effect of their rhythm disturbance. A too-slow heartbeat (or a heart blockage) may cause symptoms, too.

Efek pada Menyelam

Serious arrhythmias, such as ventricular tachycardia and many types of atrial arrhythmia, are incompatible with diving. The risk for any person who develops an arrhythmia during a dive is, of course, losing consciousness while underwater. Supraventricular tachycardia, for example, is unpredictable in its onset and may even be triggered simply by immersing one’s face in cold water. Anyone who has had more than one episode of this type of arrhythmia should not dive.

Kebanyakan aritmia yang memerlukan pengobatan juga mendiskualifikasi individu yang terkena dari penyelaman yang aman. Pengecualian dapat dibuat berdasarkan kasus per kasus dengan berkonsultasi dengan ahli jantung dan petugas medis selam.

Seseorang yang memiliki aritmia jantung memerlukan evaluasi medis lengkap oleh ahli jantung sebelum melakukan penyelaman. Dalam beberapa kasus, studi elektrofisiologi dapat mengidentifikasi jalur konduksi yang abnormal, dan masalahnya dapat diperbaiki. Baru-baru ini, dokter dan peneliti telah menentukan bahwa orang dengan beberapa aritmia (seperti jenis tertentu dari sindrom Wolff-Parkinson-White, yang ditandai dengan jalur listrik ekstra) dapat dengan aman berpartisipasi dalam menyelam setelah evaluasi menyeluruh oleh ahli jantung. Juga, dalam kasus tertentu, orang dengan aritmia atrium yang stabil (seperti fibrilasi atrium tanpa komplikasi) dapat menyelam dengan aman jika ahli jantung menentukan bahwa mereka tidak memiliki masalah kesehatan signifikan lainnya.


Sinkop adalah hilangnya kesadaran secara tiba-tiba yang diikuti dengan pemulihan yang relatif cepat. Penyebab sinkop berkisar dari yang relatif jinak hingga mengancam jiwa. Ini jarang diabaikan dan biasanya memicu kunjungan ke profesional medis.

Sinkop yang terjadi di dalam atau di sekitar air menimbulkan tantangan tertentu. Tenggelam sering terjadi ketika seorang penyelam kehilangan kesadaran dan tetap berada di dalam air. Respon cepat diperlukan untuk membawa penyelam yang tidak sadar ke permukaan dan mencegah kematian. Sinkop juga dapat terjadi saat keluar dari air, karena faktor-faktor seperti pengerahan tenaga, dehidrasi, dan kembalinya volume darah ke ekstremitas bawah secara normal.

Respon awal terhadap sinkop harus fokus pada ABC bantuan hidup dasar: jalan napas, pernapasan, dan sirkulasi. Bantuan kehidupan jantung lanjutan mungkin diperlukan. Seringkali, menempatkan pasien sinkop dengan posisi telentang di lingkungan yang sejuk akan dengan cepat mengembalikan kesadaran mereka. Jika sinkop terjadi setelah penyelaman, penting untuk mempertimbangkan penyakit dekompresi, inflasi paru yang berlebihan, dan edema paru imersi selain penyebab umum dari kondisi tersebut. Meskipun sinkop dan henti jantung mengakibatkan hilangnya kesadaran, mereka biasanya dapat dibedakan dengan jelas.

The list of possible causes of syncope is extensive, but a good medical history can help eliminate the majority of them. The patient’s age, heart rate, family history, medical conditions and medications are key in identifying the cause. If syncope is accompanied by convulsions (known as “tonic-clonic movements”), it may have been precipitated by a seizure. If it occurs upon exertion, a serious cardiac condition may be preventing the heart from keeping up with the demands of the physical activity; chest pain may be associated with this type of syncope. If standing up quickly results in syncope, that points to a cause known as “orthostatic hypotension.” And pain, fear, urination, defecation, eating, coughing or swallowing may cause a variation of the condition known as “reflex syncope.”

A medical evaluation after an incident of syncope should include a thorough history and physical — plus interviews with witnesses who observed the individual’s collapse and who can accurately relay the sequence of events. A few cases may require more extensive investigation, and some result in no conclusion.

Efek pada Menyelam

While a medical evaluation is being conducted, it is recommended that the affected individual refrain from any further diving. The cause of a given syncopal episode can be elusive but must be pursued — especially if the individual hopes to return to diving. Once the underlying factors have been determined, a diving medical officer and appropriate specialists should consider whether diving can be resumed safely.


Heart beats that occur outside the heart’s regular rhythm are known as “extrasystoles.” They often arise in the ventricles, in which case they are referred to as “premature ventricular contractions” or sometimes “premature ventricular complexes,” abbreviated as PVCs. The cause of such extra beats can be benign or can result from serious underlying heart disease.

PVC umum bahkan pada individu yang sehat; mereka telah dicatat pada 75 persen dari mereka yang menjalani pemantauan jantung berkepanjangan (setidaknya selama 24 jam, yaitu). Insiden PVC juga meningkat seiring bertambahnya usia; mereka telah dicatat pada lebih dari 5 persen individu berusia lebih dari 40 tahun yang menjalani elektrokardiogram (atau EKG, tes yang biasanya membutuhkan waktu kurang dari 10 menit untuk dilakukan). Pria tampaknya lebih terpengaruh daripada wanita.

The extrasystole itself is usually not felt. It is followed by a pause — a skipped beat — as the heart’s electrical system resets itself. The contraction following the pause is usually more forceful than normal, and this beat is frequently perceived as a palpitation — an unusually rapid or intense beat. If extrasystoles are either sustained or combined with other rhythm abnormalities, affected individuals may also experience dizziness or lightheadedness. Heart palpitations and the sensation of missed or skipped beats are the most common complaints of those who seek medical care for extrasystole.

A medical examination of the condition begins with a history and physical and should also include an ECG and various laboratory tests, including the levels of electrolytes (such as sodium, potassium and chloride) in the blood. In some cases, doctors may recommend an echocardiogram (an ultrasound examination of the heart), a stress test and/or the use of a Holter monitor (a device that records the heart’s electrical activity continuously for a 24- to 48-hour period). Holter monitoring may uncover PVCs that are unifocal — that is, they originate from a single location. Of greater concern are multifocal PVCs — those that arise from multiple locations — as well as those that exhibit specific patterns known R-on-T phenomenon, bigeminy and trigeminy.

If serious structural disorders, such as coronary artery disease or cardiomyopathy (a weakening of the heart muscle), can be ruled out — and the patient remains asymptomatic — the only “treatment” required may be reassurance. But for symptomatic patients, the course is less clear, as there is controversy regarding the effectiveness of the available treatment options. Two drugs commonly used to treat high blood pressure — beta blockers and calcium channel blockers — have been used in patients with extrasystole with some success. Antiarrhythmics have also been prescribed for extrasystole but have met with mixed reviews. A procedure known as cardiac ablation may be an option for symptomatic patients, if the location where their extra beats arise can be identified; the procedure involves threading tiny electrodes into the heart via catheters, then zapping the affected locations to rewire the heart’s faulty circuits.

Efek pada Menyelam

Meskipun PVC hadir dalam persentase besar pada individu normal, mereka telah terbukti meningkatkan mortalitas dari waktu ke waktu. Jika PVC terdeteksi, penting untuk diselidiki dan kondisi terkait yang diketahui harus dikesampingkan. Penyelam yang mengalami PVC dan ditemukan juga memiliki penyakit arteri koroner atau kardiomiopati akan menempatkan diri mereka pada risiko yang signifikan jika mereka terus menyelam. Penyelam yang didiagnosis dengan fenomena R-on-T, takikardia ventrikel yang tidak berkelanjutan atau PVC multifokal juga harus menahan diri untuk tidak menyelam. Penyelam yang mengalami PVC tetapi tetap tanpa gejala mungkin dapat mempertimbangkan untuk kembali menyelam; individu tersebut harus mendiskusikan dengan ahli jantung mereka temuan medis mereka, keinginan mereka untuk terus menyelam dan pemahaman yang jelas tentang risiko yang terlibat.

Atrial Fibrillation

Atrial fibrillation (AF or AFib), the most common form of arrhythmia, is characterized by a fast and irregular heartbeat. It results from a disturbance of the electrical signals that normally make the heart contract in a controlled rhythm. Instead, chaotic and rapid impulses cause uncoordinated atrial filling and ventricle pumping action. This leads to a decrease in overall cardiac output, which can affect one’s exercise capacity or even result in unconsciousness. In addition, AF causes blood to pool in the atria, which promotes the formation of blood clots that may break loose and enter the circulatory system; if this occurs, it may result in a stroke.

Studi AS baru-baru ini menunjukkan peningkatan insiden AF secara keseluruhan serta perbedaan ras yang signifikan dalam prevalensinya. Risiko seumur hidup AF (pada usia 80 tahun) baru-baru ini ditemukan menjadi 21 persen pada pria kulit putih dan 17 persen pada wanita kulit putih tetapi hanya 11 persen pada orang Afrika-Amerika dari kedua jenis kelamin. Pada tahun 2050, diperkirakan AF akan mempengaruhi antara 5,6 juta dan 12 juta orang Amerika. Angka-angka ini signifikan, karena AF dikaitkan dengan risiko stroke iskemik empat kali lipat hingga lima kali lipat lebih tinggi. Individu dengan AF, setelah disesuaikan dengan faktor risiko lain, juga memiliki risiko demensia dua kali lipat lebih tinggi.

The most common causes of AF are hypertension and coronary artery disease. Additional causes include a history of valvular disorders, hypertrophic cardiomyopathy (a thickening of the heart’s muscle), deep vein thrombosis (DVT), pulmonary embolism, obesity, hyperthyroidism (also called “overactive thyroid”), heavy alcohol consumption, an imbalance of electrolytes in the blood, cardiac surgery and heart failure.

Some people with AF experience no symptoms and are unaware they have the condition until it’s discovered during a physical examination. Others may experience symptoms such as the following:

  • Palpitasi (detak jantung berpacu, tidak nyaman, tidak teratur atau sensasi flip-flopping di dada)
  • Kelemahan
  • Penurunan kemampuan untuk berlatih
  • Kelelahan
  • Pusing
  • Pening
  • Kebingungan
  • Sesak nafas
  • Nyeri dada

Terjadinya dan durasi fibrilasi atrium biasanya jatuh ke dalam salah satu dari tiga pola:

  • Occasional (or “paroxysmal”): Gangguan ritme dan gejalanya datang dan pergi, berlangsung selama beberapa menit hingga beberapa jam, dan kemudian berhenti dengan sendirinya. Peristiwa semacam itu dapat terjadi beberapa kali dalam setahun, dan frekuensinya biasanya meningkat seiring waktu.
  • Tetap: The heart’s rhythm doesn’t go back to normal on its own, and treatment — such as an electrical shock or medication — is required to restore a normal rhythm.
  • Permanen: The heart’s rhythm can’t be restored to normal. Treatment may be required to control the heart rate, and medication may be prescribed to prevent the formation of blood clots.

Setiap kasus baru AF harus diselidiki dan penyebabnya ditentukan. Investigasi dapat mencakup pemeriksaan fisik; elektrokardiogram; pengukuran kadar elektrolit, termasuk magnesium; tes hormon tiroid; ekokardiogram; hitung darah lengkap; dan/atau rontgen dada.

Treating the underlying cause of AF can help control the fibrillation. Various medications, including beta blockers, may help regulate the heart rate. A procedure known as cardioversion — which can be performed with either a mild electrical shock or medication — may prompt the heart to revert to a normal rhythm; before cardioversion is attempted, it is essential to ensure that a clot has not formed in the atrium. Cardiac ablation, which is described in the “Extrasystole” section, may also be used to treat AF. In addition, anticoagulant drugs are often prescribed for individuals with AF to prevent the formation clots and thus reduce their risk of stroke. It is also of note that the neurological effects of an embolic stroke associated with AF can sometimes be confused with the symptoms of decompression sickness.

Efek pada Menyelam

A thorough medical examination should be conducted to identify the underlying cause of the atrial fibrillation. It is often the underlying cause that is of most concern regarding fitness to dive. But even atrial fibrillation itself can have a significant impact on cardiac output and therefore on maximum exercise capacity. Individuals who experience recurrent episodes of symptomatic AF should refrain from further diving. The medications often used to control atrial fibrillation can present their own problems, by causing other arrhythmias and/or impairing the individual’s exercise capacity. It is essential that anyone diagnosed with AF have a detailed discussion with a cardiologist before resuming diving.

Serangan Jantung Mendadak

Sudden cardiac arrest (SCA) — a cessation of the heart’s beating action, with little or no warning — is an acute medical emergency. During the arrest, blood stops circulating to the body’s vital organs, including the brain, the kidneys and the heart itself. Cut off from oxygen, these organs die within minutes. If the arrest is not corrected quickly, the affected individual will not survive.

The causes of SCA include myocardial infarction (heart attack), heart failure, drowning, coronary artery disease, electrolyte abnormalities, drugs, abnormalities in the heart’s electrical conduction system, cardiomyopathy (a weakening of the heart muscle) and embolism (a clot that has lodged in a major vessel).

SCA menyumbang 450.000 kematian di Amerika Serikat setiap tahun dan 63 persen kematian jantung di Amerika berusia lebih dari 35 tahun. Risiko kematian jantung mendadak pada orang dewasa meningkat sebanyak enam kali lipat dengan bertambahnya usia, sejajar dengan meningkatnya insiden penyakit jantung iskemik. Risiko SCA lebih besar pada mereka yang memiliki penyakit jantung struktural, tetapi pada 50 persen kematian jantung mendadak, korban tidak memiliki kesadaran akan penyakit jantung, dan pada 20 persen otopsi yang dilakukan setelah kematian tersebut, tidak ditemukan kelainan struktural kardiovaskular.

Meskipun biasanya ada sedikit peringatan sebelum serangan jantung mendadak, kadang-kadang individu mungkin mengalami pusing, kesulitan bernapas, palpitasi atau nyeri dada.

Perawatan segera harus difokuskan pada pemulihan sirkulasi dengan cepat menggunakan kompresi dada atau CPR dan defibrilasi. Setelah resusitasi, korban harus dibawa ke rumah sakit sesegera mungkin. Perawatan selanjutnya dapat terdiri dari upaya untuk menghilangkan penyebab yang mendasari penangkapan melalui pemberian obat-obatan, pembedahan atau penggunaan perangkat listrik yang ditanamkan.

Strategi pencegahan termasuk belajar mengenali tanda-tanda peringatan SCA, jika terjadi; mengidentifikasi, menghilangkan, atau mengendalikan faktor risiko apa pun yang dapat memengaruhi Anda; dan menjadwalkan pemeriksaan fisik secara teratur, serta pengujian yang sesuai, bila diindikasikan.

Efek pada Menyelam

Penyelam dengan gejala penyakit kardiovaskular harus dievaluasi oleh ahli jantung dan spesialis kedokteran selam mengenai partisipasi mereka yang berkelanjutan dalam penyelaman. Pada individu tanpa gejala, risiko SCA dapat dievaluasi dengan menggunakan faktor risiko kardiovaskular yang diketahui seperti merokok, tekanan darah tinggi, kolesterol tinggi, diabetes, kurang olahraga, dan kelebihan berat badan. Misalnya, orang yang merokok memiliki dua setengah kali risiko menderita kematian jantung mendadak daripada bukan perokok.

Masalah yang Melibatkan Alat Pacu Jantung Tertanam (Implan)

A pacemaker is a small battery-operated device that helps an individual’s heart beat in a regular rhythm. It does this by generating a slight electrical current that stimulates the heart to beat. The device is implanted under the skin of the chest, just below the collarbone, and is hooked up to heart with tiny wires that are threaded into the organ through its major vessels. In some individuals, the heart may need only intermittent help from the pacemaker, if the pause between two beats becomes too long. In others, however, the heart may depend completely on the pacemaker for regular stimulation of its beating action.

Dada dengan alat pacu jantung pada citra rontgen

Efek pada Menyelam

Setiap kasus yang melibatkan alat pacu jantung harus dievaluasi secara individual. Dua faktor yang paling penting untuk diperhitungkan adalah sebagai berikut:

  1. Mengapa individu tersebut bergantung pada alat pacu jantung?
  2. Is the individual’s pacemaker rated to perform at depths (in other words, pressures) compatible with recreational diving — plus an added margin of safety?

Alasan untuk faktor kedua adalah bahwa alat pacu jantung ditanamkan di jaringan tepat di bawah kulit dan dengan demikian terkena tekanan lingkungan yang sama dengan penyelam selama menyelam. Untuk penyelaman yang aman, alat pacu jantung harus dinilai untuk tampil pada kedalaman setidaknya 130 kaki (40 meter) dan juga harus beroperasi dengan baik selama kondisi perubahan tekanan yang relatif cepat, seperti yang akan dialami selama naik dan turun.

As with any medication or medical device, the underlying problem that led to the implantation of the pacemaker is the most significant factor in determining someone’s fitness to dive. The need to have a pacemaker implanted usually indicates a serious disturbance in the heart’s own conduction system.

Jika gangguan muncul dari kerusakan struktural pada otot jantung itu sendiri, seperti yang sering terjadi ketika seseorang menderita serangan jantung yang parah, individu tersebut mungkin kurang memiliki kebugaran kardiovaskular untuk menyelam dengan aman.

Beberapa individu, bagaimanapun, bergantung pada alat pacu jantung bukan karena otot jantung telah rusak tetapi hanya karena area yang menghasilkan impuls yang membuat otot jantung berkontraksi tidak berfungsi secara konsisten atau memadai. Atau sirkuit yang menghantarkan impuls ke otot jantung mungkin rusak, menghasilkan sinyal yang tidak tepat atau tidak teratur. Tanpa bantuan alat pacu jantung, individu tersebut mungkin menderita episode sinkop (pingsan). Orang lain mungkin menderita serangan jantung yang cukup ringan sehingga mereka mengalami kerusakan sisa minimal pada otot jantung mereka, tetapi sistem konduksi mereka tetap tidak dapat diandalkan dan karenanya membutuhkan dorongan dari alat pacu jantung.

If a cardiologist determines that an individual’s level of cardiovascular fitness is sufficient for safe diving, and the individual’s pacemaker is rated to function at a pressure of at least 130 feet (40 meters), that individual may be considered fit for recreational diving. But once again, it cannot be emphasized strongly enough that any divers with cardiac issues check with their doctor before diving.

Berikutnya Chapter 6 – Pulmonary and Venous Disorders >

Bab 6: Gangguan Paru dan Vena

“The risk of a DVT occurring on a flight lasting more than four hours is between 1 in 4,650 flights and 1 in 6,000 flights.”

Your lungs have many functions in your body beyond just oxygenating your blood. One of their other important roles is filtering the venous blood that returns from the body. The venous system is characterized by slower blood flow than the arterial system, which contributes to the occasional formation of a blood clot (known as a “peripheral venous thrombosis”), which could be transported into the lungs and could even cause a pulmonary embolism (or blockage in the vessels of the lungs).

In this chapter, you’ll learn about:

Deep Vein Thrombosis

Deep vein thrombosis (DVT) is a condition in which a blood clot (a “thrombus”) forms in one or more of the body’s deep veins, usually in the legs. If a clot breaks free and travels through the circulatory system, it can lead to life-threatening conditions. For example, if a clot lodges in the lungs, it is known as a pulmonary embolism (PE) and affects the lungs’ ability to oxygenate the blood (see “Pulmonary Embolism”). Collectively, DVT and PE are sometimes referred to as venous thromboembolisms (VTEs).

A clot that originates as a DVT can also cause a stroke in individuals with a patent foramen ovale (PFO, a hole in the wall between the atria — see “Patent Foramen Ovale” for details about this condition); in such a case, the clot travels through the veins to the right atrium of the heart, passes through the PFO to the left atrium and then travels through the arteries to the brain.

DVT tidak terkait dengan menyelam, tetapi penyelam sering bepergian, dan perjalanan merupakan faktor risiko yang signifikan untuk DVT. Pada sekitar setengah dari semua kasus DVT, individu tidak mengalami gejala yang nyata sebelum timbulnya kondisi tersebut. Paling sering, itu dimulai di betis. Gejala mungkin termasuk yang berikut:

  • Pembengkakan di kaki, pergelangan kaki atau kaki yang terkena
  • Nyeri di betis yang menyebar ke pergelangan kaki atau kaki
  • Kehangatan di daerah yang terkena
  • A change in the color of the skin — to pale, red or blue

Sebagian besar VTE yang terkait dengan perjalanan udara terjadi dalam waktu dua minggu setelah penerbangan dan diselesaikan dalam waktu delapan minggu. Jika tidak diobati, DVT yang dimulai di betis akan menyebar ke paha dan panggul pada sekitar 25 persen kasus. DVT paha dan panggul yang tidak diobati memiliki risiko sekitar 50 persen mengarah ke PE, yang merupakan komplikasi DVT yang paling serius. Banyak kasus DVT tidak menunjukkan gejala dan sembuh secara spontan. Namun, DVT sering kambuh pada individu yang pernah mengalami satu episode kondisi tersebut.

Most DVTs occur in individuals with pre-existing risk factors for DVT who remain motionless for a long time — such as when traveling a long distance by plane, car or train; when doing deskwork over a period of many hours; or when bedridden. This is because immobility slows down the blood flow in the veins (a condition known as “venous stasis”); in addition, pressure on the calf from an inadequate seat can injure the vein walls. If you sit still for 90 minutes, the blood flow in your calf drops by half, and that doubles your chance of developing a blood clot. For every additional hour you spend sitting, your risk of a blood clot increases by 10 percent.

The incidence of DVT in the general population is one-tenth of one percent, but it is higher in those who have risk factors and those who travel often. Long-distance air travel may double or even quadruple the risk of suffering a VTE. Although DVT is often called the “economy class disease,” business-class travelers are susceptible, too. The risk of a DVT occurring on a flight lasting more than four hours is between 1 in 4,650 flights and 1 in 6,000 flights; this is lower than the risk in the general population, but that’s because people who take long trips are likely to be healthier than average. The incidence of DVT among travelers with a low to intermediate pre-existing risk for VTE who take a journey longer than eight hours was found to be 0.3 percent for symptomatic cases and 0.5 percent when including asymptomatic cases as well.

Faktor risiko DVT meliputi:

  • Usia yang lebih tua (risiko meningkat setelah usia 40 tahun)
  • Obesitas (didefinisikan sebagai indeks massa tubuh lebih besar dari 30)
  • Penggunaan estrogen (baik kontrasepsi hormonal atau terapi penggantian hormon)
  • Kehamilan (termasuk masa nifas)
  • Trombofilia (kecenderungan peningkatan abnormal darah untuk menggumpal)
  • VTE sebelumnya atau riwayat keluarga VTE
  • Kanker aktif
  • Gangguan medis yang serius
  • Baru menjalani operasi, rawat inap atau trauma
  • Mobilitas terbatas
  • Central venous catheterization (the presence of a catheter in one’s chest, for use in administering medication or nutrients and/or drawing blood samples)

Antara 75 persen dan 99 persen dari mereka yang mengembangkan VTE terkait perjalanan memiliki lebih dari satu faktor risiko ini.

Height is also a factor in one’s risk of developing a travel-related DVT. People who are either very short — less than 5 feet, 3 inches (1.6 meters) — or very tall — more than 6 feet, 3 inches (1.9 meters) — appear to be at increased risk as a result of their inability to adjust their seats sufficiently to accommodate their height. In addition to effects of immobility, shorter passengers may suffer greater than usual seat-edge pressure on the backs of their knees, and taller passengers may be cramped due to insufficient leg room. All of these factors can contribute to injury of deep veins, venous stasis and activation of the blood’s clotting mechanisms.

Those who are at increased risk of DVT should wear compression socks whenever they fly or drive long distances and should consult their primary-care provider regarding the possible benefit of taking a clot-preventative such as aspirin. Although the risk of DVT for healthy people is small, everybody should be aware of the factors that can precipitate the condition — and avoid long periods of immobility. The best way to prevent DVT is to get up and walk around from time to time. It also helps to flex your feet and calf muscles regularly if you must remain seated for any length of time. Finally, it is also helpful in preventing DVT to stay well hydrated.

Efek pada Menyelam

Setiap individu yang telah didiagnosis dengan DVT akut atau yang menggunakan antikoagulan harus menahan diri dari menyelam. Dimungkinkan untuk kembali ke penyelaman yang aman setelah DVT, tetapi evaluasi kebugaran untuk menyelam harus dilakukan secara individual.

Emboli Paru

A pulmonary embolism (PE) is an obstruction (or “embolus”) that lodges in the vasculature of the pulmonary system, or lungs. The embolus may be air, fat or a blood clot (or “thrombus”). If a PE is caused by a thrombus, the clot typically originated in the deep vein system of the legs — a condition known as deep vein thrombosis (DVT); see “Deep Vein Thrombosis” for a discussion of DVT. The resulting obstruction in the flow of blood to the lungs typically causes a drop in cardiac output and a significant drop in blood pressure.

Onset PE bisa akut atau kronis. PE akut sering menyebabkan gejala yang jelas bagi individu, sementara PE dengan onset kronis sering mengungkapkan kehadirannya hanya dengan temuan yang sangat halus yang tidak diperhatikan oleh individu yang terkena. PE yang tidak diobati memiliki angka kematian yang tinggi. Prognosis yang sangat suram berlaku untuk individu yang memiliki DVT bersamaan, trombus ventrikel kanan atau disfungsi ventrikel kanan. Diperkirakan 1,5 persen dari semua kematian didiagnosis karena PE.

Risk factors for DVT — and thus for PE — include recent surgery; a stroke; a diagnosis of autoimmune disease, malignancy or heart disease; obesity; smoking; hypertension; and a previous DVT.

Symptoms of PE include chest pain (also known as “dyspnea”), pain or swelling of the calf (signaling a DVT), hypotension (abnormally low blood pressure), an altered level of consciousness and syncope (fainting). Distension of the neck veins in the absence of other conditions — such as pneumothorax (a buildup of air in the membrane surrounding the lungs, sometimes referred to as a collapsed lung) or heart failure — may also be observed in individuals suffering a PE.

PE should be one of the first conditions considered when attempting to make a diagnosis in someone exhibiting acute onset of any of the symptoms listed above and any of the associated risk factors. Appropriate diagnostic tests may include measurement of the individual’s levels of a hormone called brain natriuretic peptide (BNP) and of a protein known as cardiac troponin, as well as a CT angiogram of the lungs.

Treatment should focus initially on managing the significant cardiopulmonary impairments that are usually involved in a PE. Such care may include breathing support from an artificial ventilator and fluid management. The use of anticoagulant medication is also important, both to treat the embolus and to stop the development of another thrombus. Thrombolysis (known as “clot-busting”), embolectomy (surgical removal of the embolus) or the placement in the vena cava (one of the large vessels in the chest) of a filter designed to prevent any future clots from reaching the lungs may also be considered — especially in anyone who goes into shock, because mortality in such cases approaches 50 percent. Similar measures may be called for in cases of PE caused by a venous gas bubble. Hyperbaric oxygen therapy may be indicated as well, if the individual’s condition does not improve or deteriorates even after the application of supportive measures.

Efek pada Menyelam

Despite many medical advances, five-year all-cause mortality in individuals who have suffered a PE due to underlying risk factors remains more than 30 percent. And pulmonary hypertension — elevated pressure in the arteries that carry blood from the heart to the lungs, a condition that limits one’s exercise capacity — often persists in individuals who have had a PE, even after successful treatment. Thus any determination of fitness for diving by those who have had a PE must include an evaluation of their lung function, underlying conditions, anticoagulation status, exercise capacity and cardiac status.

Immersion Pulmonary Edema

Immersion pulmonary edema (IPE) is a form of pulmonary edema — an accumulation of fluid in the tissues of the lungs — that specifically affects divers and swimmers. Immersion at depth is a key factor in the development of IPE. That’s because immersion in an upright position causes a significant shift of fluid from the peripheral to the central circulatory system, resulting in higher pressure in the capillaries of the pulmonary system. Elements of the diving milieu that contribute to IPE’s occurrence include the fact that divers breathe gases that are denser than air at sea level, which means more negative pressure within chest is needed to inhale; the likelihood of gas bubbles becoming trapped in the vasculature of the lungs; the cold underwater environment; and the potential in underwater settings for exertion or panic, which can exacerbate elevated capillary pressure.

Maintaining a proper fluid balance in your lung tissue and its vasculature requires a dynamic combination of various opposing forces. Unopposed changes in any of these forces can result in a buildup of excess fluid — or edema — in your pulmonary tissue. The main variables involved in regulating this fluid balance are the following:

  • Tekanan onkotik (suatu bentuk tekanan yang diberikan oleh protein) di kapiler paru, pembuluh terkecil dari sistem peredaran darah
  • Oncotic pressure in the pulmonary system’s interstitial fluid (fluid in the cavities of your lung tissue)
  • Permeabilitas kapiler paru
  • Tekanan hidrostatik (tekanan cairan saat istirahat) di kapiler paru
  • Tekanan hidrolik (tekanan cairan yang dikompresi atau dipompa) dalam cairan interstitial
  • Tekanan di alveolus, kantung udara kecil di paru-paru.

These factors, which collectively are known as “Starling forces,” can all be quantified and placed in an equation that can then be used to calculate the net differential of
yang bekerja.

Pulmonary edema is caused by changes in these forces — such as a drop in the levels of key proteins in the blood; leakage from the pulmonary capillaries due to sepsis (a life-threatening complication of infections); an increase in hydrostatic pressure in the pulmonary capillaries due to heart failure; and negative pressure in the alveoli due to resistance from breathing through a faulty regulator. Additional issues that can contribute to the development of pulmonary edema include side effects of some cardiovascular drugs; ARDS (acute respiratory distress syndrome, a life-threatening condition that prevents oxygen from getting to the lungs); reperfusion (a procedure that restores circulation after a heart attack or stroke); cardiomyopathy (a weakening of the heart muscle); high-altitude pulmonary edema; a pulmonary embolus (a blood clot lodged in a vessel in the lungs); re-expansion (the reinflation of a collapsed lung); pulmonary hypertension (elevated pressure in the arteries that carry blood from the heart to the lungs); lung cancer; hemorrhage (uncontrolled bleeding); and various disorders of the nervous system. Other factors can include overhydration by well-intentioned divers who have heard the conventional wisdom that dehydration is a risk factor for decompression sickness, as well as poor physical conditioning, which can result in increased negative pressure in the alveoli during deep inspiration.

Gejala IPE termasuk nyeri dada; dispnea (ketidaknyamanan atau kesulitan bernapas); mengi; dan dahak berwarna merah muda dan berbusa saat terendam atau segera setelah keluar dari air. Kebanyakan orang yang menderita episode IPE tidak memiliki riwayat atau tanda signifikan yang menunjukkan kerentanan terhadap kondisi tersebut; namun, risiko IPE memang meningkat seiring bertambahnya usia, obesitas, dan tekanan darah tinggi.

Once pulmonary edema occurs, hypoxia (lack of an adequate supply of oxygen) leads to constriction of the pulmonary vasculature, which worsens the cascade of ill effects. The situation can be further aggravated by the accompanying dyspnea, which, when experienced underwater, can induce panic and uncontrolled ascent to the surface — leading to overinflation of the lungs and even near-drowning.

To help differentiate immersion pulmonary edema from other conditions with similar symptoms (such as near-drowning, pulmonary decompression sickness and pulmonary overinflation syndrome), it is important to keep in mind that IPE’s onset can occur either at depth or upon reaching the surface. And it is not necessarily precipitated by aggressive diving, a rapid ascent or the aspiration of water.

Treatment for IPE should begin with removal of the affected individual from the water (to relieve the compression of the vessels in the lower extremities, allowing centrally pooled fluids to return to the extremities) and with administration of oxygen (beginning at 100 percent and later at a reduced concentration). A diuretic such as Lasix may help to reduce excess intravascular fluid, although diuresis — the body’s natural excretion of fluid — may already be under way as a result of hormonal influences. The condition usually resolves quickly in a healthy diver. Prolonged hospitalization is rarely required; if it is necessary, it’s usually due to contributing factors, such as an underlying cardiac problem.

Efek pada Menyelam

Some divers have one episode of IPE and never experience the condition again, but repeated episodes are likely. Any individuals who suffer a first episode of IPE are advised to undergo a detailed examination to rule out any medical conditions that may have caused the edema and then to have a thorough discussion with their physician regarding the risks of continuing to dive. And all divers are urged to have regular maintenance on their regulators, to refrain from overhydration and to attend to proper dive planning in order to avoid exertion and panic — as well as to keep conditions such as obesity and hypertension under control.

Berikutnya Chapter 7 – Issues Involving Cardiovascular Drugs >

Bab 7: Masalah yang Melibatkan Obat Kardiovaskular

“Divers who take drugs to treat cardiovascular diseases often worry about the drugs’ compatibility with diving. However, in most cases, it is the underlying condition and not the drug that should cause concern.”

Some drugs may have side effects that preclude diving. Divers should be very familiar with the side effects of any drugs they take and should discuss them with their physician — and be sure their physician knows about their diving activities. A one-time clearance to dive does not preclude progression of a disease, so any changes in your health status should prompt another medical examination before you dive again.

In this chapter, you’ll learn about:

Antiplatelet dan Antikoagulan

Antiplatelets and anticoagulants are two classes of drugs — popularly known as “blood thinners” — that reduce the risk of clot formation and thus the risk of deep vein thrombosis, pulmonary embolism, heart attack and stroke. They may also be prescribed for individuals who have been diagnosed with atrial fibrillation or for those who have had heart-valve surgery or who have received a stent, an implanted pacemaker or an implanted defibrillator. (See other sections for detailed descriptions of these conditions.)

Gumpalan terbentuk ketika sel-sel darah yang dikenal sebagai trombosit saling menempel, dan kemudian protein dalam darah mengikatnya menjadi massa padat. Pembekuan adalah fungsi normal yang membatasi dan menghentikan pendarahan ketika pembuluh darah terluka. Namun, jika gumpalan tumbuh di luar kendali atau mulai bergerak di dalam sistem peredaran darah, maka itu menimbulkan bahaya. Gumpalan mungkin tersangkut di arteri pulmonalis dan menyebabkan emboli paru; di arteri jantung dan menyebabkan serangan jantung; atau di pembuluh otak dan menyebabkan stroke. Semua peristiwa ini dapat mengancam jiwa.

Red stethescope and blood thinner drugs

Antiplatelet dan antikoagulan menjaga darah dari pembekuan secepat atau seefektif biasanya dengan mencegah trombosit menempel satu sama lain dan dengan mencegah protein pembekuan mengikat bersama. Mereka bahkan dapat membantu memecah gumpalan yang sudah terbentuk.

Antiplatelets — such as aspirin and clopidogrel (also known by the brand name Plavix) — work by preventing the platelets from adhering to one another.

Anticoagulants — such as heparin and warfarin (Coumadin) — inhibit the action of the clotting proteins and thus slow down the chemical reactions that lead to the formation of a clot. There were also several new anticoagulants approved between 2010 and 2012, including rivaroxaban (Xarelto), dabigatran (Pradaxa) and apixaban (Eliquis).

The major side effect of all antiplatelets and anticoagulants is excessive bleeding. Those taking such drugs — especially at too high a dosage — may bleed or bruise easily or may experience bleeding that does not stop as quickly as usual.

Perhatian Khusus Mengenai Warfarin

Individuals who take warfarin (Coumadin) are generally advised to avoid any activities that may cause abrasions, bruising or cuts — such as contact sports. They are also urged to exercise caution while brushing their teeth and shaving. Even such trivial injuries as insect bites may cause complications in anyone taking warfarin.

There are additional risks involving warfarin particular to diving. Most significantly, there is an appreciable chance of serious injury in any diving environment, despite one’s best efforts to mitigate the risk. Cuts and bruises are unavoidable, for example. And in anyone taking warfarin, a decompression injury or difficulty equalizing ear pressure could cause bleeding in the ears or the spinal cord that would otherwise not occur.

Selain itu, baik perjalanan maupun gangguan pola makan yang diakibatkannya dapat mengganggu kerja warfarin dengan cara yang berbahaya. Selain itu, kemampuan perawatan kesehatan di banyak tujuan penyelaman populer mungkin tidak cukup untuk memberikan perawatan yang diperlukan jika terjadi peristiwa yang kurang menguntungkan.

Untuk semua alasan ini, siapa pun yang menggunakan warfarin umumnya disarankan untuk tidak menyelam. Namun demikian, banyak orang yang menggunakan warfarin dapat menyelam tanpa komplikasi besar. Kunci menyelam yang aman saat menggunakan warfarin adalah kepatuhan yang ketat terhadap tes darah bulanan dan pengawasan rutin oleh dokter. Dengan kontrol pengenceran darah yang baik, risiko komplikasi perdarahan cukup rendah.

According to Dr. Alfred Bove, a dive-medicine specialist, “For divers, the most important question is whether the condition that requires the use of Coumadin or Plavix prohibits diving. In many cases, the illness is over, or chronic but well adjusted, and does not interfere with safe recreational diving. Safe diving with Coumadin or Plavix depends on the absence of illness that would limit diving, careful control of clotting time, avoiding ear or sinus squeeze, and a thorough education on drugs and foods which cause changes in the effects of Coumadin. There are many divers using Coumadin and Plavix safely, but a special effort must be made to understand how to avoid problems of excess or not enough anticoagulation.”


Statins are a class of drugs prescribed to lower high blood cholesterol and thus prevent heart attack and stroke. They reduce both LDL cholesterol (“bad cholesterol”) and inflammation in the arteries. Statins work by inhibiting a liver enzyme that is involved in the production of cholesterol. Though they are most effective at lowering LDL cholesterol, they may also contribute to raising HDL cholesterol (“good cholesterol”).

Common statins include the following — listed first by their generic name and, in parentheses, their brand name:

  • Atorvastatin (Lipitor)
  • Cholestipol (Cholestid)
  • Colesevalam hydrochloride (Welchol)
  • Fluvastatin (Lescol)
  • Lovastatin (Mevacor)
  • Ezetimibe (Zetia)
  • Ezetimibe combined with simvastatin (Vytorin)
  • Fenofibrate (Tricor)
  • Pravastatin (Pravachol)
  • Rosuvastatin (Crestor)
  • Simvastatin (Zocor)

Uji klinis yang disponsori oleh perusahaan yang memproduksi obat ini telah menemukan efek samping yang jarang dan ringan. Namun, dalam uji coba yang dirancang dengan cermat yang dikenal sebagai IDEAL, hampir 90 persen subjek melaporkan efek samping, hampir setengahnya serius. Efek samping statin yang telah dicatat dalam literatur medis dan yang dapat mengganggu penyelaman meliputi:

  • Dispnea (ketidaknyamanan atau kesulitan bernapas)
  • Nyeri otot
  • Komplikasi tendon
  • Masalah pencernaan
  • Ruam atau kulit memerah
  • Peningkatan gula darah atau diabetes tipe 2.
  • Disfungsi kognitif (Beberapa penelitian melaporkan bahwa hingga 75 persen dari mereka yang menggunakan statin mengalami disfungsi kognitif yang ditentukan mungkin atau pasti terkait dengan terapi statin; keparahan defisit kognitif jelas terkait dengan potensi statin.)
  • Kelelahan (Hampir setengah dari mereka dalam studi 2012 melaporkan peningkatan kelelahan yang signifikan saat menggunakan statin.)

Efek samping statin yang paling umum adalah nyeri otot. Ini terjadi pada sekitar 20 persen dari mereka yang memakai statin. Rasa sakit ini mungkin terasa seperti pegal-pegal, pegal-pegal, kelelahan atau kelemahan pada otot-otot Anda. Rasa sakit kadang-kadang digambarkan sebagai ketidaknyamanan ringan, tetapi kadang-kadang cukup parah untuk membuat aktivitas sehari-hari menjadi sulit. Para ilmuwan menduga terjadinya rasa sakit adalah karena fakta bahwa statin memblokir produksi molekul yang digunakan tubuh untuk menghasilkan energi, yang disebut CoQ10; uji klinis saat ini sedang menjajaki apakah mengonsumsi suplemen CoQ10 dapat mencegah efek samping ini. Namun, penggunaan suplemen CoQ10 secara rutin tidak dianjurkan, meskipun ada beberapa masalah keamanan dengan suplemen tersebut.

Sangat jarang, statin dapat menyebabkan semacam kerusakan otot yang mengancam jiwa yang disebut rhabdomyolysis; itu menyebabkan nyeri otot yang parah dan dapat mengakibatkan kerusakan hati, gagal ginjal dan kematian. Rhabdomyolysis sangat mungkin terjadi pada mereka yang menggunakan statin dalam kombinasi dengan obat lain seperti antibiotik dan antidepresan atau pada mereka yang menggunakan statin dosis tinggi.

Beberapa orang yang menggunakan statin dapat mengalami mual, gas, diare atau sembelit. Efek samping ini jarang terjadi.

Ruam atau kemerahan juga dapat terjadi setelah mengonsumsi statin. Ini lebih mungkin terjadi pada individu yang menggunakan statin dan niasin bersama-sama, baik dalam pil kombinasi seperti Simcor atau sebagai dua obat terpisah.

The FDA warns on statin labels that some people taking statins have developed memory loss or confusion; these effects are reversed when the medication is halted. Conversely, there has also been evidence that statins may help with brain function — in patients with dementia or Alzheimer’s, for example. This effect is still being studied.

Tetapi tidak peduli apa efek samping yang mungkin dialami individu yang menggunakan statin, penting agar mereka tidak berhenti minum obat tanpa berbicara dengan dokter mereka. Penting juga bagi mereka yang menggunakan statin untuk meminimalkan perubahan gaya hidup, pola makan, dan obat-obatan yang dijual bebas, terutama selama perjalanan yang berhubungan dengan menyelam.

Faktor risiko untuk efek samping statin meliputi:

  • Memakai beberapa obat penurun kolesterol
  • Berusia 65 tahun atau lebih, perempuan atau memiliki kerangka tubuh yang lebih kecil
  • Memiliki penyakit ginjal atau hati atau diabetes tipe 1 atau 2.
  • Minum terlalu banyak alkohol (lebih dari dua gelas sehari untuk pria berusia 65 tahun ke bawah atau lebih dari satu gelas sehari untuk wanita dari segala usia dan pria di atas 65 tahun)

Selain itu, masalah lebih mungkin terjadi pada mereka yang menggunakan statin dan obat-obatan berikut:

  • Antimalaria, seperti klorokuin dan hidroksiklorokuin (Plaquenil)
  • Pengobatan tiroid

Efek pada Menyelam

Meskipun efek samping dari beberapa statin dapat mengganggu penyelaman, mereka mungkin menawarkan manfaat kesehatan secara keseluruhan.

One of the effects of statins is an increase in the body’s production of nitric oxide. This helps to preserve the integrity of the endothelium (the inner lining of the blood vessels), to reduce injury from ischemia and/or reperfusion (a procedure that restores circulation after a heart attack or stroke) and to depress interdependent inflammatory and coagulation activity — all of which could provide protection against decompression sickness (DCS). On the other hand, a study of healthy divers who took either a statin or a placebo several days before a dive found no difference in their risk of postdive venous gas bubbles. Thus taking statins specifically to prevent DCS does not appear to offer any benefit, especially in view of the possibility of adverse side effects.

If you are over age 45 and are already taking statins for medical reasons, you need to answer “yes” to at least two questions on the Recreational Scuba Training Council (RSTC) Medical Statement (see the “Physical Activity Recommendations” section for details regarding this form):

T: Apakah saat ini Anda sedang mengonsumsi obat resep? (kecuali alat kontrasepsi atau antimalaria)?

T: Apakah Anda berusia di atas 45 tahun dan dapat menjawab YA untuk satu atau lebih jawaban berikut?

  • Memiliki kadar kolesterol tinggi

Kedua respons positif ini menandakan kondisi yang sudah ada sebelumnya yang dapat memengaruhi keselamatan Anda saat menyelam dan yang memerlukan pemeriksaan medis menyeluruh untuk memeriksa adanya faktor risiko lain atau tanda penyakit kardiovaskular. Memang, siapa pun yang berusia di atas 45 tahun, yang berisiko tinggi mengalami masalah jantung atau yang memiliki tanda-tanda penyakit kardiovaskular harus mengunjungi dokter setidaknya sekali setiap tahun.

Perhatikan juga bahwa izin menyelam satu kali tidak menghalangi perkembangan penyakit, jadi setiap perubahan status kesehatan Anda harus meminta pemeriksaan medis lain sebelum Anda menyelam lagi. Penyelam juga harus memperhatikan fakta bahwa mereka mungkin diminta untuk mengisi Pernyataan Medis RSTC baru sebelum penyelaman apa pun dan bahwa mereka dapat ditolak izinnya untuk menyelam berdasarkan tanggapan mereka. Namun, sebagian besar operator selam akan menerima bukti izin medis terbaru untuk menyelam. Jika Anda ragu tentang kebugaran Anda untuk menyelam, diskusikan status Anda dengan operator selam Anda terlebih dahulu.


Ada sejumlah obat yang dapat digunakan untuk menurunkan hipertensi (yang juga disebut sebagai tekanan darah tinggi). Efek sampingnya bervariasi, sehingga beberapa lebih cocok daripada yang lain untuk digunakan oleh penyelam.

Penghambat Beta (Beta Blockers)

Beta blockers are commonly prescribed to treat hypertension, but they have a big drawback for divers: They can reduce the heart’s capacity for exercise. If a medication restricts the heart’s function during exercise, then there is an increased risk of loss of consciousness, which could prove fatal while diving.

Because of this effect, doctors often recommend that those who take beta blockers undergo a stress test before diving. According to Dr. Alfred Bove, a dive-medicine specialist, divers who take beta blockers but who can achieve a strenuous level of exercise without severe fatigue can be cleared for diving. Bove also points out that although diving does not usually represent the maximum workload on an individual’s heart, anyone who takes beta blockers should avoid extreme exercise because their maximum exercise capacity may be reduced.

ACE Inhibitors

Drugs known as ACE (angiotension-converting enzyme) inhibitors have less effect on exercise capacity than beta blockers, so many doctors prescribe them for people who exercise frequently. But although ACE inhibitors seem to have fewer adverse effects, they can lead to a cough or to airway swelling — conditions that could cause severe problems underwater. If a cough related to ACE-inhibitor use persists, many physicians will recommend a different medication. ACE inhibitors should also be avoided by anyone with kidney disease.

Calcium Channel Blockers

Calcium channel blockers don’t typically pose problems for divers; they relax the walls of the blood vessels, reducing resistance to the flow of blood and thus lowering blood pressure. However, some individuals who take calcium channel blockers, especially in moderate doses, find that a change of position from sitting or lying down to standing causes a drop in blood pressure and thus momentary dizziness. This effect may be cause for concern in divers, but calcium channel blockers appear to have no other adverse implications for diving.


Diuretics reduce the amount of excess water and salt in the body; the decline in the volume of bodily fluids results in a lowering of the blood pressure. Divers seem to have very little trouble with diuretics, although in very warm environments, they may cause excessive water loss and thus dehydration. Because dehydration seems to contribute to the risk of decompression sickness, divers may want to reduce their diuretic dosage on days that they engage in diving — though they should check with their doctor before doing so.


Antiaritmia dirancang untuk membantu jantung Anda mempertahankan ritme yang stabil. Alfred Bove, seorang spesialis pengobatan selam, memperingatkan bahwa beberapa antiaritmia, bila dikombinasikan dengan olahraga dan menurunkan kadar potasium, dapat meningkatkan risiko cedera pada jantung. Meskipun obat-obatan tersebut biasanya tidak mengganggu penyelaman, aritmia yang menyebabkan obat tersebut dikonsumsi sendiri dapat menghalangi penyelaman yang aman. Konsultasi menyeluruh dengan ahli jantung dan spesialis kedokteran selam sangat penting jika Anda minum obat untuk mengontrol detak jantung yang tidak normal dan ingin mempertimbangkan untuk menyelam.

Berikutnya Bacaan dan Sumber Lebih Lanjut >

Bacaan dan Sumber Lebih Lanjut

2008 Physical Activity Guidelines for Americans. U.S. Department of Health and Human Services.

“2013 ACC/AHA guideline on the assessment of cardiovascular risk: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines” by D.C. Goff et al. Circulation; June 2014; Vol. 129, No. 25, Suppl. 2; pages S49-S73.

“2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines” by R.H. Eckel et al. Circulation; June 2014; Vol. 29, No. 25, Suppl. 2; pages S76-S99.

“About High Blood Pressure.” American Heart Association.

“Age-predicted maximal heart rate revisited” by H. Tanaka et al. Journal of the American College of Cardiology; January 2001; Vol. 37, No. 1; pages 153-156.

Assessing Cardiovascular Risk: Systematic Evidence Review from the Risk Assessment Work Group, 2013. U.S. Department of Health and Human Services.

“Assessing your weight and health risk.” National Heart, Lung, and Blood Institute.

“Cardiac effects of water immersion in healthy volunteers” by D.E. Smith et al. Echocardiography; January 1998; Vol. 15, No. 1; pages 35-42.

“Cardiovascular autonomic control during short-term thermoneutral and cool head-out immersion” by L. Mourot et al. Aviation, Space, and Environmental Medicine; January 2008; Vol. 79, No. 1; pages 14-20.

“Cardiovascular evaluation of middle-aged/senior individuals engaged in leisure-time sport activities: Position stand from the Sections of Exercise Physiology and Sports Cardiology of the European Association of Cardiovascular Prevention and Rehabilitation” by M. Borjesson et al. European Journal of Cardiovascular Prevention & Rehabilitation; June 2011; Vol. 18, No. 3; pages 446-458.

“Compendium of physical activities: An update of activity codes and MET intensities” by B.E. Ainsworth et al. Medicine & Science in Sports & Exercise; September 2000; Vol. 32, No. 9, Suppl.; pages S498-S504.

“Contribution of abdomen and legs to central blood volume expansion in humans during immersion” by L.B. Johansen et al. Journal of Applied Physiology; September 1997; Vol. 83, No. 3; pages 695-699.

Diving and Subaquatic Medicine by C. Edmonds et al. CRC Press; 2nd edition, 4th printing; 1990; page 85.

“The effect of Mediterranean diet on metabolic syndrome and its components: A meta-analysis of 50 studies and 534,906 individuals” by C.M. Kastorini. Journal of the American College of Cardiology; March 2011; Vol. 57, No. 11; pages 1299-1313.

“Effects of water immersion to the neck on pulmonary circulation and tissue volume in man” by R. Begin et al. Journal of Applied Physiology; March 1976; Vol. 40, No. 3; pages 293-299.

“Energetics of underwater swimming with scuba” by D.R. Pendergast et al. Medicine & Science in Sports & Exercise; May 1996; Vol. 28, No. 5; pages 573-580.

“Exercise and acute cardiovascular events: Placing the risks into perspective: A scientific statement from the American Heart Association Council on Nutrition, Physical Activity, and Metabolism and the Council on Clinical Cardiology” by P.D. Thompson et al. Circulation; May 2007; Vol. 115, No. 17; pages 2358-2368.

“Exercise intensity inferred from air consumption during recreational scuba diving” by P. Buzzacott et al. Diving and Hyperbaric Medicine Journal; June 2014; Vol. 44, No. 2; pages 74-78.

“Hemodynamic changes induced by recreational scuba diving” by A. Boussuges et al. Chest; May 2006; Vol. 129, No. 5; pages 1337-1343.

“How much physical activity do adults need?” Centers for Disease Control and Prevention.

“The incidence of primary cardiac arrest during vigorous exercise” by D.S. Siscovick et al. New England Journal of Medicine; October 1984; Vol. 311, No. 14; pages 874-877.

“Medical screening of recreational divers for cardiovascular disease: Consensus discussion at the Divers Alert Network Fatality Workshop” by S.J. Mitchell and A.A. Bove. Undersea and Hyperbaric Medicine; July-August 2011; Vol. 38, No. 4; pages 289-296.

“Oxygen consumption in underwater swimming” by J.V. Dwyer and E.H. Lanphier. Navy Experimental Diving Unit Report; December 1954; pages 14-54.

“Oxygen uptake studies of divers when fin swimming with maximum effort at depths of 6-176 feet” by J.B. Morrison. Aerospace Medicine; October 1973; Vol. 44, No. 10; pages 1120-1129.

“Prevalence, incidence and lifetime risk of atrial fibrillation: The Rotterdam study” by J. Heeringa et al. European Heart Journal; April 2006; Vol. 27, No. 8; pages 949–953.

“Primary and secondary prevention of coronary artery disease” by T.N. Mohamad.; September 2014.

“RSTC medical statement.” Recreational Scuba Training Council, Inc. 2007.

“Safety of sports for athletes with implantable cardioverter-defibrillators: Results of a prospective, multinational registry” by R. Lampert et al. Circulation. May 2013; Vol. 127, No. 20; pages 2021-2030.

“Scuba injury death rate among insured DAN members” by P.J. Denoble et al. Diving and Hyperbaric Medicine Journal. December 2008; Vol. 38, No. 4; pages 182-188.

“Triggering of acute myocardial infarction by heavy physical exertion. Protection against triggering by regular exertion. Determinants of Myocardial Infarction Onset Study Investigators” by M.A. Mittleman et al. New England Journal of Medicine; December 1993; Vol. 329, No. 23; pages 1677-1683.

Ears & Diving

Cedera telinga adalah penyebab utama cedera di antara penyelam scuba. Banyak dari cedera ini dapat dengan mudah dicegah. Buku referensi Telinga & Menyelam mengkaji anatomi telinga yang kompleks, teknik penyamaan tekanan yang tepat, gejala cedera, kondisi medis dan pentingnya kebersihan telinga yang baik dalam perawatan pencegahan dan pengelolaan organ vital ini.

In this book, you’ll learn about:


Petar Denoble, MD, DSc – Managing Editor
James Chimiak, MD – Editor

Bahasa Indonesia